Loading…
Local structure of self-affine sets
The structure of a self-similar set with the open set condition does not change under magnification. For self-affine sets, the situation is completely different. We consider self-affine Cantor sets $E\subset \mathbb {R}^2$ of the type studied by Bedford, McMullen, Gatzouras and Lalley, for which the...
Saved in:
Published in: | Ergodic theory and dynamical systems 2013-10, Vol.33 (5), p.1326-1337 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c350t-78d210de27f13d08d0fb51d584e4899dcfbdb4774fb0e68de7d1ad4ac4fe903b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c350t-78d210de27f13d08d0fb51d584e4899dcfbdb4774fb0e68de7d1ad4ac4fe903b3 |
container_end_page | 1337 |
container_issue | 5 |
container_start_page | 1326 |
container_title | Ergodic theory and dynamical systems |
container_volume | 33 |
creator | BANDT, CHRISTOPH KÄENMÄKI, ANTTI |
description | The structure of a self-similar set with the open set condition does not change under magnification. For self-affine sets, the situation is completely different. We consider self-affine Cantor sets $E\subset \mathbb {R}^2$ of the type studied by Bedford, McMullen, Gatzouras and Lalley, for which the projection onto the horizontal axis is an interval. We show that in small square $\varepsilon $-neighborhoods $N$ of almost each point $x$ in $E,$ with respect to many Bernoulli measures on the address space, $E\cap N$ is well approximated by product sets $[0,1]\times C$, where $C$ is a Cantor set. Even though $E$ is totally disconnected, all tangent sets have a product structure with interval fibers, reminiscent of the view of attractors of chaotic differentiable dynamical systems. We also prove that $E$has uniformly scaling scenery in the sense of Furstenberg, Gavish and Hochman: the family of tangent sets is the same at almost all points$x.$ |
doi_str_mv | 10.1017/S0143385712000326 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439730302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0143385712000326</cupid><sourcerecordid>1439730302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-78d210de27f13d08d0fb51d584e4899dcfbdb4774fb0e68de7d1ad4ac4fe903b3</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EEqXwA9gidWEJ3MVObY-ogoJUiQGYI8c-o1RJU-xk4N_jqB0QiOlOet97unuMXSPcIqC8ewUUnKtSYgEAvFiesBmKpc6FQHnKZpOcT_o5u4hxOzEoyxlbbHpr2iwOYbTDGCjrfRap9bnxvtlR2od4yc68aSNdHeecvT8-vK2e8s3L-nl1v8ktL2HIpXIFgqNCeuQOlANfl-hKJUgorZ31tauFlMLXQEvlSDo0ThgrPGngNZ-zm0PuPvSfI8Wh6ppoqW3NjvoxVukFLTlwKBK6-IVu-zHs0nWJKlSJWkudKDxQNvQxBvLVPjSdCV8VQjXVVv2pLXn40WO6OjTug35E_-v6BiUPbNk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1428519979</pqid></control><display><type>article</type><title>Local structure of self-affine sets</title><source>Cambridge Journals Online</source><creator>BANDT, CHRISTOPH ; KÄENMÄKI, ANTTI</creator><creatorcontrib>BANDT, CHRISTOPH ; KÄENMÄKI, ANTTI</creatorcontrib><description>The structure of a self-similar set with the open set condition does not change under magnification. For self-affine sets, the situation is completely different. We consider self-affine Cantor sets $E\subset \mathbb {R}^2$ of the type studied by Bedford, McMullen, Gatzouras and Lalley, for which the projection onto the horizontal axis is an interval. We show that in small square $\varepsilon $-neighborhoods $N$ of almost each point $x$ in $E,$ with respect to many Bernoulli measures on the address space, $E\cap N$ is well approximated by product sets $[0,1]\times C$, where $C$ is a Cantor set. Even though $E$ is totally disconnected, all tangent sets have a product structure with interval fibers, reminiscent of the view of attractors of chaotic differentiable dynamical systems. We also prove that $E$has uniformly scaling scenery in the sense of Furstenberg, Gavish and Hochman: the family of tangent sets is the same at almost all points$x.$</description><identifier>ISSN: 0143-3857</identifier><identifier>EISSN: 1469-4417</identifier><identifier>DOI: 10.1017/S0143385712000326</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Approximation ; Dynamical systems ; Fibers ; Intervals ; Projection ; Scenery ; Self-similarity ; Tangents</subject><ispartof>Ergodic theory and dynamical systems, 2013-10, Vol.33 (5), p.1326-1337</ispartof><rights>Copyright © 2012 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-78d210de27f13d08d0fb51d584e4899dcfbdb4774fb0e68de7d1ad4ac4fe903b3</citedby><cites>FETCH-LOGICAL-c350t-78d210de27f13d08d0fb51d584e4899dcfbdb4774fb0e68de7d1ad4ac4fe903b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0143385712000326/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,72832</link.rule.ids></links><search><creatorcontrib>BANDT, CHRISTOPH</creatorcontrib><creatorcontrib>KÄENMÄKI, ANTTI</creatorcontrib><title>Local structure of self-affine sets</title><title>Ergodic theory and dynamical systems</title><addtitle>Ergod. Th. Dynam. Sys</addtitle><description>The structure of a self-similar set with the open set condition does not change under magnification. For self-affine sets, the situation is completely different. We consider self-affine Cantor sets $E\subset \mathbb {R}^2$ of the type studied by Bedford, McMullen, Gatzouras and Lalley, for which the projection onto the horizontal axis is an interval. We show that in small square $\varepsilon $-neighborhoods $N$ of almost each point $x$ in $E,$ with respect to many Bernoulli measures on the address space, $E\cap N$ is well approximated by product sets $[0,1]\times C$, where $C$ is a Cantor set. Even though $E$ is totally disconnected, all tangent sets have a product structure with interval fibers, reminiscent of the view of attractors of chaotic differentiable dynamical systems. We also prove that $E$has uniformly scaling scenery in the sense of Furstenberg, Gavish and Hochman: the family of tangent sets is the same at almost all points$x.$</description><subject>Approximation</subject><subject>Dynamical systems</subject><subject>Fibers</subject><subject>Intervals</subject><subject>Projection</subject><subject>Scenery</subject><subject>Self-similarity</subject><subject>Tangents</subject><issn>0143-3857</issn><issn>1469-4417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQhS0EEqXwA9gidWEJ3MVObY-ogoJUiQGYI8c-o1RJU-xk4N_jqB0QiOlOet97unuMXSPcIqC8ewUUnKtSYgEAvFiesBmKpc6FQHnKZpOcT_o5u4hxOzEoyxlbbHpr2iwOYbTDGCjrfRap9bnxvtlR2od4yc68aSNdHeecvT8-vK2e8s3L-nl1v8ktL2HIpXIFgqNCeuQOlANfl-hKJUgorZ31tauFlMLXQEvlSDo0ThgrPGngNZ-zm0PuPvSfI8Wh6ppoqW3NjvoxVukFLTlwKBK6-IVu-zHs0nWJKlSJWkudKDxQNvQxBvLVPjSdCV8VQjXVVv2pLXn40WO6OjTug35E_-v6BiUPbNk</recordid><startdate>201310</startdate><enddate>201310</enddate><creator>BANDT, CHRISTOPH</creator><creator>KÄENMÄKI, ANTTI</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>201310</creationdate><title>Local structure of self-affine sets</title><author>BANDT, CHRISTOPH ; KÄENMÄKI, ANTTI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-78d210de27f13d08d0fb51d584e4899dcfbdb4774fb0e68de7d1ad4ac4fe903b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Approximation</topic><topic>Dynamical systems</topic><topic>Fibers</topic><topic>Intervals</topic><topic>Projection</topic><topic>Scenery</topic><topic>Self-similarity</topic><topic>Tangents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BANDT, CHRISTOPH</creatorcontrib><creatorcontrib>KÄENMÄKI, ANTTI</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Ergodic theory and dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BANDT, CHRISTOPH</au><au>KÄENMÄKI, ANTTI</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local structure of self-affine sets</atitle><jtitle>Ergodic theory and dynamical systems</jtitle><addtitle>Ergod. Th. Dynam. Sys</addtitle><date>2013-10</date><risdate>2013</risdate><volume>33</volume><issue>5</issue><spage>1326</spage><epage>1337</epage><pages>1326-1337</pages><issn>0143-3857</issn><eissn>1469-4417</eissn><abstract>The structure of a self-similar set with the open set condition does not change under magnification. For self-affine sets, the situation is completely different. We consider self-affine Cantor sets $E\subset \mathbb {R}^2$ of the type studied by Bedford, McMullen, Gatzouras and Lalley, for which the projection onto the horizontal axis is an interval. We show that in small square $\varepsilon $-neighborhoods $N$ of almost each point $x$ in $E,$ with respect to many Bernoulli measures on the address space, $E\cap N$ is well approximated by product sets $[0,1]\times C$, where $C$ is a Cantor set. Even though $E$ is totally disconnected, all tangent sets have a product structure with interval fibers, reminiscent of the view of attractors of chaotic differentiable dynamical systems. We also prove that $E$has uniformly scaling scenery in the sense of Furstenberg, Gavish and Hochman: the family of tangent sets is the same at almost all points$x.$</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0143385712000326</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-3857 |
ispartof | Ergodic theory and dynamical systems, 2013-10, Vol.33 (5), p.1326-1337 |
issn | 0143-3857 1469-4417 |
language | eng |
recordid | cdi_proquest_miscellaneous_1439730302 |
source | Cambridge Journals Online |
subjects | Approximation Dynamical systems Fibers Intervals Projection Scenery Self-similarity Tangents |
title | Local structure of self-affine sets |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A22%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20structure%20of%20self-affine%20sets&rft.jtitle=Ergodic%20theory%20and%20dynamical%20systems&rft.au=BANDT,%20CHRISTOPH&rft.date=2013-10&rft.volume=33&rft.issue=5&rft.spage=1326&rft.epage=1337&rft.pages=1326-1337&rft.issn=0143-3857&rft.eissn=1469-4417&rft_id=info:doi/10.1017/S0143385712000326&rft_dat=%3Cproquest_cross%3E1439730302%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-78d210de27f13d08d0fb51d584e4899dcfbdb4774fb0e68de7d1ad4ac4fe903b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1428519979&rft_id=info:pmid/&rft_cupid=10_1017_S0143385712000326&rfr_iscdi=true |