Loading…

Thermal regulation of the hearth by means of a blast-furnace model

A mathematical model of the lower heat-transfer zone is developed on the basis of heat-transfer theory and operational data for blast furnaces in Europe, the Commonwealth of Independent States, China, and the United States. This model may be used to determine the theoretical combustion temperature o...

Full description

Saved in:
Bibliographic Details
Published in:Steel in translation 2013-05, Vol.43 (5), p.297-301
Main Authors: Mishin, I. V., Kurbatov, Yu. L., Kuzin, A. V., Afanas’eva, Z. K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2164-166ffb632c7404f9fa6adf22f1db20c943cff2fd9cb1ef2b7e42c92989a325d13
container_end_page 301
container_issue 5
container_start_page 297
container_title Steel in translation
container_volume 43
creator Mishin, I. V.
Kurbatov, Yu. L.
Kuzin, A. V.
Afanas’eva, Z. K.
description A mathematical model of the lower heat-transfer zone is developed on the basis of heat-transfer theory and operational data for blast furnaces in Europe, the Commonwealth of Independent States, China, and the United States. This model may be used to determine the theoretical combustion temperature of coke. On that basis, a relation is derived between the theoretical combustion temperature of coke, the yield of blast-furnace gases, and the degree of direct reduction of iron, when coal-dust fuel is employed.
doi_str_mv 10.3103/S0967091213050124
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439731486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1439731486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2164-166ffb632c7404f9fa6adf22f1db20c943cff2fd9cb1ef2b7e42c92989a325d13</originalsourceid><addsrcrecordid>eNp1kDFPwzAUhC0EEqXwA9gssbAE_GzHiUeoKCBVYqDMkeM8N62cpNjJ0H9PojIgENOT7r47PR0h18DuBDBx_860ypgGDoKlDLg8ITPQIk2YzvNTMpvsZPLPyUWMO8ZSxVOYkcd1jaExngbcDN70266lnaN9jbRGE_qalgfaoGnjJBtaehP7xA2hNRZp01XoL8mZMz7i1fedk4_l03rxkqzenl8XD6vEclAyAaWcK5XgNpNMOu2MMpXj3EFVcma1FNY57iptS0DHywwlt5rrXBvB0wrEnNwee_eh-xww9kWzjRa9Ny12QyxACp0JkLka0Ztf6K6bXvYTxXMBY6McKThSNnQxBnTFPmwbEw4FsGJatfiz6pjhx0wc2XaD4Ufzv6Ev1n53Yw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1428313254</pqid></control><display><type>article</type><title>Thermal regulation of the hearth by means of a blast-furnace model</title><source>Springer Nature</source><creator>Mishin, I. V. ; Kurbatov, Yu. L. ; Kuzin, A. V. ; Afanas’eva, Z. K.</creator><creatorcontrib>Mishin, I. V. ; Kurbatov, Yu. L. ; Kuzin, A. V. ; Afanas’eva, Z. K.</creatorcontrib><description>A mathematical model of the lower heat-transfer zone is developed on the basis of heat-transfer theory and operational data for blast furnaces in Europe, the Commonwealth of Independent States, China, and the United States. This model may be used to determine the theoretical combustion temperature of coke. On that basis, a relation is derived between the theoretical combustion temperature of coke, the yield of blast-furnace gases, and the degree of direct reduction of iron, when coal-dust fuel is employed.</description><identifier>ISSN: 0967-0912</identifier><identifier>EISSN: 1935-0988</identifier><identifier>DOI: 10.3103/S0967091213050124</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Blast furnace practice ; Blast furnaces ; Chemistry and Materials Science ; Coke ; Combustion temperature ; Control ; Heat transfer ; Materials Science ; Mathematical models ; Translations</subject><ispartof>Steel in translation, 2013-05, Vol.43 (5), p.297-301</ispartof><rights>Allerton Press, Inc. 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2164-166ffb632c7404f9fa6adf22f1db20c943cff2fd9cb1ef2b7e42c92989a325d13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Mishin, I. V.</creatorcontrib><creatorcontrib>Kurbatov, Yu. L.</creatorcontrib><creatorcontrib>Kuzin, A. V.</creatorcontrib><creatorcontrib>Afanas’eva, Z. K.</creatorcontrib><title>Thermal regulation of the hearth by means of a blast-furnace model</title><title>Steel in translation</title><addtitle>Steel Transl</addtitle><description>A mathematical model of the lower heat-transfer zone is developed on the basis of heat-transfer theory and operational data for blast furnaces in Europe, the Commonwealth of Independent States, China, and the United States. This model may be used to determine the theoretical combustion temperature of coke. On that basis, a relation is derived between the theoretical combustion temperature of coke, the yield of blast-furnace gases, and the degree of direct reduction of iron, when coal-dust fuel is employed.</description><subject>Blast furnace practice</subject><subject>Blast furnaces</subject><subject>Chemistry and Materials Science</subject><subject>Coke</subject><subject>Combustion temperature</subject><subject>Control</subject><subject>Heat transfer</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Translations</subject><issn>0967-0912</issn><issn>1935-0988</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAUhC0EEqXwA9gssbAE_GzHiUeoKCBVYqDMkeM8N62cpNjJ0H9PojIgENOT7r47PR0h18DuBDBx_860ypgGDoKlDLg8ITPQIk2YzvNTMpvsZPLPyUWMO8ZSxVOYkcd1jaExngbcDN70266lnaN9jbRGE_qalgfaoGnjJBtaehP7xA2hNRZp01XoL8mZMz7i1fedk4_l03rxkqzenl8XD6vEclAyAaWcK5XgNpNMOu2MMpXj3EFVcma1FNY57iptS0DHywwlt5rrXBvB0wrEnNwee_eh-xww9kWzjRa9Ny12QyxACp0JkLka0Ztf6K6bXvYTxXMBY6McKThSNnQxBnTFPmwbEw4FsGJatfiz6pjhx0wc2XaD4Ufzv6Ev1n53Yw</recordid><startdate>201305</startdate><enddate>201305</enddate><creator>Mishin, I. V.</creator><creator>Kurbatov, Yu. L.</creator><creator>Kuzin, A. V.</creator><creator>Afanas’eva, Z. K.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>201305</creationdate><title>Thermal regulation of the hearth by means of a blast-furnace model</title><author>Mishin, I. V. ; Kurbatov, Yu. L. ; Kuzin, A. V. ; Afanas’eva, Z. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2164-166ffb632c7404f9fa6adf22f1db20c943cff2fd9cb1ef2b7e42c92989a325d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Blast furnace practice</topic><topic>Blast furnaces</topic><topic>Chemistry and Materials Science</topic><topic>Coke</topic><topic>Combustion temperature</topic><topic>Control</topic><topic>Heat transfer</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Translations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mishin, I. V.</creatorcontrib><creatorcontrib>Kurbatov, Yu. L.</creatorcontrib><creatorcontrib>Kuzin, A. V.</creatorcontrib><creatorcontrib>Afanas’eva, Z. K.</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Steel in translation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mishin, I. V.</au><au>Kurbatov, Yu. L.</au><au>Kuzin, A. V.</au><au>Afanas’eva, Z. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal regulation of the hearth by means of a blast-furnace model</atitle><jtitle>Steel in translation</jtitle><stitle>Steel Transl</stitle><date>2013-05</date><risdate>2013</risdate><volume>43</volume><issue>5</issue><spage>297</spage><epage>301</epage><pages>297-301</pages><issn>0967-0912</issn><eissn>1935-0988</eissn><abstract>A mathematical model of the lower heat-transfer zone is developed on the basis of heat-transfer theory and operational data for blast furnaces in Europe, the Commonwealth of Independent States, China, and the United States. This model may be used to determine the theoretical combustion temperature of coke. On that basis, a relation is derived between the theoretical combustion temperature of coke, the yield of blast-furnace gases, and the degree of direct reduction of iron, when coal-dust fuel is employed.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.3103/S0967091213050124</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0967-0912
ispartof Steel in translation, 2013-05, Vol.43 (5), p.297-301
issn 0967-0912
1935-0988
language eng
recordid cdi_proquest_miscellaneous_1439731486
source Springer Nature
subjects Blast furnace practice
Blast furnaces
Chemistry and Materials Science
Coke
Combustion temperature
Control
Heat transfer
Materials Science
Mathematical models
Translations
title Thermal regulation of the hearth by means of a blast-furnace model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A15%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20regulation%20of%20the%20hearth%20by%20means%20of%20a%20blast-furnace%20model&rft.jtitle=Steel%20in%20translation&rft.au=Mishin,%20I.%20V.&rft.date=2013-05&rft.volume=43&rft.issue=5&rft.spage=297&rft.epage=301&rft.pages=297-301&rft.issn=0967-0912&rft.eissn=1935-0988&rft_id=info:doi/10.3103/S0967091213050124&rft_dat=%3Cproquest_cross%3E1439731486%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2164-166ffb632c7404f9fa6adf22f1db20c943cff2fd9cb1ef2b7e42c92989a325d13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1428313254&rft_id=info:pmid/&rfr_iscdi=true