Loading…
Thermal regulation of the hearth by means of a blast-furnace model
A mathematical model of the lower heat-transfer zone is developed on the basis of heat-transfer theory and operational data for blast furnaces in Europe, the Commonwealth of Independent States, China, and the United States. This model may be used to determine the theoretical combustion temperature o...
Saved in:
Published in: | Steel in translation 2013-05, Vol.43 (5), p.297-301 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2164-166ffb632c7404f9fa6adf22f1db20c943cff2fd9cb1ef2b7e42c92989a325d13 |
container_end_page | 301 |
container_issue | 5 |
container_start_page | 297 |
container_title | Steel in translation |
container_volume | 43 |
creator | Mishin, I. V. Kurbatov, Yu. L. Kuzin, A. V. Afanas’eva, Z. K. |
description | A mathematical model of the lower heat-transfer zone is developed on the basis of heat-transfer theory and operational data for blast furnaces in Europe, the Commonwealth of Independent States, China, and the United States. This model may be used to determine the theoretical combustion temperature of coke. On that basis, a relation is derived between the theoretical combustion temperature of coke, the yield of blast-furnace gases, and the degree of direct reduction of iron, when coal-dust fuel is employed. |
doi_str_mv | 10.3103/S0967091213050124 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439731486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1439731486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2164-166ffb632c7404f9fa6adf22f1db20c943cff2fd9cb1ef2b7e42c92989a325d13</originalsourceid><addsrcrecordid>eNp1kDFPwzAUhC0EEqXwA9gssbAE_GzHiUeoKCBVYqDMkeM8N62cpNjJ0H9PojIgENOT7r47PR0h18DuBDBx_860ypgGDoKlDLg8ITPQIk2YzvNTMpvsZPLPyUWMO8ZSxVOYkcd1jaExngbcDN70266lnaN9jbRGE_qalgfaoGnjJBtaehP7xA2hNRZp01XoL8mZMz7i1fedk4_l03rxkqzenl8XD6vEclAyAaWcK5XgNpNMOu2MMpXj3EFVcma1FNY57iptS0DHywwlt5rrXBvB0wrEnNwee_eh-xww9kWzjRa9Ny12QyxACp0JkLka0Ztf6K6bXvYTxXMBY6McKThSNnQxBnTFPmwbEw4FsGJatfiz6pjhx0wc2XaD4Ufzv6Ev1n53Yw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1428313254</pqid></control><display><type>article</type><title>Thermal regulation of the hearth by means of a blast-furnace model</title><source>Springer Nature</source><creator>Mishin, I. V. ; Kurbatov, Yu. L. ; Kuzin, A. V. ; Afanas’eva, Z. K.</creator><creatorcontrib>Mishin, I. V. ; Kurbatov, Yu. L. ; Kuzin, A. V. ; Afanas’eva, Z. K.</creatorcontrib><description>A mathematical model of the lower heat-transfer zone is developed on the basis of heat-transfer theory and operational data for blast furnaces in Europe, the Commonwealth of Independent States, China, and the United States. This model may be used to determine the theoretical combustion temperature of coke. On that basis, a relation is derived between the theoretical combustion temperature of coke, the yield of blast-furnace gases, and the degree of direct reduction of iron, when coal-dust fuel is employed.</description><identifier>ISSN: 0967-0912</identifier><identifier>EISSN: 1935-0988</identifier><identifier>DOI: 10.3103/S0967091213050124</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Blast furnace practice ; Blast furnaces ; Chemistry and Materials Science ; Coke ; Combustion temperature ; Control ; Heat transfer ; Materials Science ; Mathematical models ; Translations</subject><ispartof>Steel in translation, 2013-05, Vol.43 (5), p.297-301</ispartof><rights>Allerton Press, Inc. 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2164-166ffb632c7404f9fa6adf22f1db20c943cff2fd9cb1ef2b7e42c92989a325d13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Mishin, I. V.</creatorcontrib><creatorcontrib>Kurbatov, Yu. L.</creatorcontrib><creatorcontrib>Kuzin, A. V.</creatorcontrib><creatorcontrib>Afanas’eva, Z. K.</creatorcontrib><title>Thermal regulation of the hearth by means of a blast-furnace model</title><title>Steel in translation</title><addtitle>Steel Transl</addtitle><description>A mathematical model of the lower heat-transfer zone is developed on the basis of heat-transfer theory and operational data for blast furnaces in Europe, the Commonwealth of Independent States, China, and the United States. This model may be used to determine the theoretical combustion temperature of coke. On that basis, a relation is derived between the theoretical combustion temperature of coke, the yield of blast-furnace gases, and the degree of direct reduction of iron, when coal-dust fuel is employed.</description><subject>Blast furnace practice</subject><subject>Blast furnaces</subject><subject>Chemistry and Materials Science</subject><subject>Coke</subject><subject>Combustion temperature</subject><subject>Control</subject><subject>Heat transfer</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Translations</subject><issn>0967-0912</issn><issn>1935-0988</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAUhC0EEqXwA9gssbAE_GzHiUeoKCBVYqDMkeM8N62cpNjJ0H9PojIgENOT7r47PR0h18DuBDBx_860ypgGDoKlDLg8ITPQIk2YzvNTMpvsZPLPyUWMO8ZSxVOYkcd1jaExngbcDN70266lnaN9jbRGE_qalgfaoGnjJBtaehP7xA2hNRZp01XoL8mZMz7i1fedk4_l03rxkqzenl8XD6vEclAyAaWcK5XgNpNMOu2MMpXj3EFVcma1FNY57iptS0DHywwlt5rrXBvB0wrEnNwee_eh-xww9kWzjRa9Ny12QyxACp0JkLka0Ztf6K6bXvYTxXMBY6McKThSNnQxBnTFPmwbEw4FsGJatfiz6pjhx0wc2XaD4Ufzv6Ev1n53Yw</recordid><startdate>201305</startdate><enddate>201305</enddate><creator>Mishin, I. V.</creator><creator>Kurbatov, Yu. L.</creator><creator>Kuzin, A. V.</creator><creator>Afanas’eva, Z. K.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>201305</creationdate><title>Thermal regulation of the hearth by means of a blast-furnace model</title><author>Mishin, I. V. ; Kurbatov, Yu. L. ; Kuzin, A. V. ; Afanas’eva, Z. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2164-166ffb632c7404f9fa6adf22f1db20c943cff2fd9cb1ef2b7e42c92989a325d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Blast furnace practice</topic><topic>Blast furnaces</topic><topic>Chemistry and Materials Science</topic><topic>Coke</topic><topic>Combustion temperature</topic><topic>Control</topic><topic>Heat transfer</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Translations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mishin, I. V.</creatorcontrib><creatorcontrib>Kurbatov, Yu. L.</creatorcontrib><creatorcontrib>Kuzin, A. V.</creatorcontrib><creatorcontrib>Afanas’eva, Z. K.</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Steel in translation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mishin, I. V.</au><au>Kurbatov, Yu. L.</au><au>Kuzin, A. V.</au><au>Afanas’eva, Z. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal regulation of the hearth by means of a blast-furnace model</atitle><jtitle>Steel in translation</jtitle><stitle>Steel Transl</stitle><date>2013-05</date><risdate>2013</risdate><volume>43</volume><issue>5</issue><spage>297</spage><epage>301</epage><pages>297-301</pages><issn>0967-0912</issn><eissn>1935-0988</eissn><abstract>A mathematical model of the lower heat-transfer zone is developed on the basis of heat-transfer theory and operational data for blast furnaces in Europe, the Commonwealth of Independent States, China, and the United States. This model may be used to determine the theoretical combustion temperature of coke. On that basis, a relation is derived between the theoretical combustion temperature of coke, the yield of blast-furnace gases, and the degree of direct reduction of iron, when coal-dust fuel is employed.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.3103/S0967091213050124</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0967-0912 |
ispartof | Steel in translation, 2013-05, Vol.43 (5), p.297-301 |
issn | 0967-0912 1935-0988 |
language | eng |
recordid | cdi_proquest_miscellaneous_1439731486 |
source | Springer Nature |
subjects | Blast furnace practice Blast furnaces Chemistry and Materials Science Coke Combustion temperature Control Heat transfer Materials Science Mathematical models Translations |
title | Thermal regulation of the hearth by means of a blast-furnace model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A15%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20regulation%20of%20the%20hearth%20by%20means%20of%20a%20blast-furnace%20model&rft.jtitle=Steel%20in%20translation&rft.au=Mishin,%20I.%20V.&rft.date=2013-05&rft.volume=43&rft.issue=5&rft.spage=297&rft.epage=301&rft.pages=297-301&rft.issn=0967-0912&rft.eissn=1935-0988&rft_id=info:doi/10.3103/S0967091213050124&rft_dat=%3Cproquest_cross%3E1439731486%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2164-166ffb632c7404f9fa6adf22f1db20c943cff2fd9cb1ef2b7e42c92989a325d13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1428313254&rft_id=info:pmid/&rfr_iscdi=true |