Loading…

Structure-related behavior of hybrid organic-inorganic materials prepared in different synthesis conditions from Zr-based NBBs and 3-methacryloxypropyl trimethoxysilane

The copolymerization of zirconium oxo‐clusters (Zr12) with 3‐methacryloxypropyl (trimethoxy)silane (MPTMS), using a Si/Zr molar ratio of 4, was investigated. The hybrid samples were prepared both with and without organosilane prehydrolysis. Differential scanning calorimetry (DSC), multinuclear liqui...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied polymer science 2012-08, Vol.125 (3), p.1713-1723
Main Authors: Di Maggio, R., Callone, E., Girardi, F., Dirè, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The copolymerization of zirconium oxo‐clusters (Zr12) with 3‐methacryloxypropyl (trimethoxy)silane (MPTMS), using a Si/Zr molar ratio of 4, was investigated. The hybrid samples were prepared both with and without organosilane prehydrolysis. Differential scanning calorimetry (DSC), multinuclear liquid, and solid state NMR analyses and Fourier transform infrared (FTIR) spectroscopy were used to characterize the hybrid materials and study the influence of synthesis conditions on condensation and polymerization. The degree of condensation (DOC) of the silsesquioxane network and the polymerization yield are generally high. However, the organosilane prehydrolysis step leads to the reduction of the extent of phase interaction, thus favoring the phase separation between silica‐zirconia‐based domains. Dynamic mechanical spectroscopy (DMS) analyses were performed on the hybrid polymers obtained by means of the two synthetic pathways. The sample prepared without the organosilane prehydrolysis step presents a higher glass transition temperature (Tg) than the one with silane prehydrolysis. By heating above the Tg, the samples retain shape and size, due to the lack of viscous flow. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012
ISSN:0021-8995
1097-4628
DOI:10.1002/app.36255