Loading…
Structure-related behavior of hybrid organic-inorganic materials prepared in different synthesis conditions from Zr-based NBBs and 3-methacryloxypropyl trimethoxysilane
The copolymerization of zirconium oxo‐clusters (Zr12) with 3‐methacryloxypropyl (trimethoxy)silane (MPTMS), using a Si/Zr molar ratio of 4, was investigated. The hybrid samples were prepared both with and without organosilane prehydrolysis. Differential scanning calorimetry (DSC), multinuclear liqui...
Saved in:
Published in: | Journal of applied polymer science 2012-08, Vol.125 (3), p.1713-1723 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The copolymerization of zirconium oxo‐clusters (Zr12) with 3‐methacryloxypropyl (trimethoxy)silane (MPTMS), using a Si/Zr molar ratio of 4, was investigated. The hybrid samples were prepared both with and without organosilane prehydrolysis. Differential scanning calorimetry (DSC), multinuclear liquid, and solid state NMR analyses and Fourier transform infrared (FTIR) spectroscopy were used to characterize the hybrid materials and study the influence of synthesis conditions on condensation and polymerization. The degree of condensation (DOC) of the silsesquioxane network and the polymerization yield are generally high. However, the organosilane prehydrolysis step leads to the reduction of the extent of phase interaction, thus favoring the phase separation between silica‐zirconia‐based domains. Dynamic mechanical spectroscopy (DMS) analyses were performed on the hybrid polymers obtained by means of the two synthetic pathways. The sample prepared without the organosilane prehydrolysis step presents a higher glass transition temperature (Tg) than the one with silane prehydrolysis. By heating above the Tg, the samples retain shape and size, due to the lack of viscous flow. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 |
---|---|
ISSN: | 0021-8995 1097-4628 |
DOI: | 10.1002/app.36255 |