Loading…

Neural network potentials for metals and oxides - First applications to copper clusters at zinc oxide

The development of reliable interatomic potentials for large‐scale molecular dynamics (MD) simulations of chemical processes at surfaces and interfaces is a formidable challenge because a wide range of atomic environments and very different types of bonding can be present. In recent years interatomi...

Full description

Saved in:
Bibliographic Details
Published in:Physica Status Solidi. B: Basic Solid State Physics 2013-06, Vol.250 (6), p.1191-1203
Main Authors: Artrith, Nongnuch, Hiller, Björn, Behler, Jörg
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The development of reliable interatomic potentials for large‐scale molecular dynamics (MD) simulations of chemical processes at surfaces and interfaces is a formidable challenge because a wide range of atomic environments and very different types of bonding can be present. In recent years interatomic potentials based on artificial neural networks (NNs) have emerged offering an unbiased approach to the construction of potential energy surfaces (PESs) for systems that are difficult to describe by conventional potentials. Here, we review the basic properties of NN potentials and describe their construction for materials like metals and oxides. The accuracy and efficiency are demonstrated using copper and zinc oxide as benchmark systems. First results for a potential of the combined ternary CuZnO system aiming at the description of oxide‐supported copper clusters are reported. Model of a copper cluster at the ZnO($10\overline {1} 0$) surface.
ISSN:0370-1972
1521-3951
DOI:10.1002/pssb.201248370