Loading…
Joining Copper Oxide Nanotube Arrays Driven by the Nanoscale Kirkendall Effect
Various annealing conditions (environment, temperature, and duration) are applied to study the nanoscale Kirkendall effect of copper (Cu) nanowire (NW) arrays on a Si substrate. The results show that an appropriate amount of oxygen supply is crucial for uniform transformation from Cu NWs (average di...
Saved in:
Published in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2013-08, Vol.9 (15), p.2546-2552 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4443-50a20ceb66d75c03414a59fb92173c8b6939a0a50afbf6a0e1516ad90a5079753 |
---|---|
cites | cdi_FETCH-LOGICAL-c4443-50a20ceb66d75c03414a59fb92173c8b6939a0a50afbf6a0e1516ad90a5079753 |
container_end_page | 2552 |
container_issue | 15 |
container_start_page | 2546 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 9 |
creator | Chun, Shu Rong Sasangka, Wardhana Aji Ng, Mei Zhen Liu, Qing Du, Anyan Zhu, Jie Ng, Chee Mang Liu, Zhi Qiang Chiam, Sing Yang Gan, Chee Lip |
description | Various annealing conditions (environment, temperature, and duration) are applied to study the nanoscale Kirkendall effect of copper (Cu) nanowire (NW) arrays on a Si substrate. The results show that an appropriate amount of oxygen supply is crucial for uniform transformation from Cu NWs (average diameter ∼50 nm) into Cu oxide nanotube arrays. An annealing duration of 30 min at 200 °C in a low vacuum environment reveals that the voids are not uniformly distributed at the Cu/Cu oxide interface. This suggests that void growth is due to surface diffusion of Cu along void surfaces. Annealing above 200 °C for 60 min resulted in complete transformation from Cu NWs into Cu oxide nanotubes. X‐ray photoelectron spectroscopy characterization indicates that the Cu oxides formed at 200 °C and 300 °C are Cu2O and CuO, respectively. It is demonstrated that the transformation from Cu NW arrays into Cu oxide nanotube arrays can be combined with the joining of stacked Si chips in a single‐process step with reasonable joint shear strength. Transmission electron microscopy‐electron energy loss spectroscopy elemental mapping analysis reveals that the joint interface is Cu oxide. The outward diffusion of Cu driven by the nanoscale Kirkendall effect is believed to enhance the joining process. By controlling the environment, temperature, and duration, joined Cu2O or CuO nanotube stacked chips can be achieved, which serve as a platform for the further development of nanostructured, stacked devices.
A Cu nanowire array is transformed into a Cu oxide nanotube array via the nanoscale Kirkendall effect after annealing at 200 °C for 60 min. Coupled with an applied load, this transformation can be used to join two nanostructure array chips in a single processing step. This approach enables the integration of Cu oxide nanotube arrays into a stacked device. |
doi_str_mv | 10.1002/smll.201202533 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439742895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1418648078</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4443-50a20ceb66d75c03414a59fb92173c8b6939a0a50afbf6a0e1516ad90a5079753</originalsourceid><addsrcrecordid>eNqN0c1P2zAYBnALbQLGduWILO2ySzp_xR9HVBhsK0UbQ0i9WE7yBgxu0tkJo__9UoVVaJftZMv-vY_06kHokJIJJYR9TMsQJoxQRljO-Q7ap5LyTGpmXm3vlOyhNyndE8IpE2oX7TEuCOVU76P5l9Y3vrnF03a1gogvn3wFeO6atusLwMcxunXCJ9E_QoOLNe7uxt9UugD4q48P0FQuBHxa11B2b9Hr2oUE757PA3T96fTH9DybXZ59nh7PslIIwbOcOEZKKKSsVF4SLqhwuakLw6jipS6k4cYRN7C6qKUjQHMqXWU2T8qonB-gD2PuKrY_e0idXfpUQgiugbZPlgpulGDa_A-lWgpNlB7o-7_ofdvHZlhko5SmUmo5qMmoytimFKG2q-iXLq4tJXZTit2UYrelDANHz7F9sYRqy_-0MAAzgl8-wPofcfbqYjZ7GZ6Nsz518LSddfHBSsVVbm_mZ_abXCwWVxff7Q3_DUWNpao</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1417816686</pqid></control><display><type>article</type><title>Joining Copper Oxide Nanotube Arrays Driven by the Nanoscale Kirkendall Effect</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Chun, Shu Rong ; Sasangka, Wardhana Aji ; Ng, Mei Zhen ; Liu, Qing ; Du, Anyan ; Zhu, Jie ; Ng, Chee Mang ; Liu, Zhi Qiang ; Chiam, Sing Yang ; Gan, Chee Lip</creator><creatorcontrib>Chun, Shu Rong ; Sasangka, Wardhana Aji ; Ng, Mei Zhen ; Liu, Qing ; Du, Anyan ; Zhu, Jie ; Ng, Chee Mang ; Liu, Zhi Qiang ; Chiam, Sing Yang ; Gan, Chee Lip</creatorcontrib><description>Various annealing conditions (environment, temperature, and duration) are applied to study the nanoscale Kirkendall effect of copper (Cu) nanowire (NW) arrays on a Si substrate. The results show that an appropriate amount of oxygen supply is crucial for uniform transformation from Cu NWs (average diameter ∼50 nm) into Cu oxide nanotube arrays. An annealing duration of 30 min at 200 °C in a low vacuum environment reveals that the voids are not uniformly distributed at the Cu/Cu oxide interface. This suggests that void growth is due to surface diffusion of Cu along void surfaces. Annealing above 200 °C for 60 min resulted in complete transformation from Cu NWs into Cu oxide nanotubes. X‐ray photoelectron spectroscopy characterization indicates that the Cu oxides formed at 200 °C and 300 °C are Cu2O and CuO, respectively. It is demonstrated that the transformation from Cu NW arrays into Cu oxide nanotube arrays can be combined with the joining of stacked Si chips in a single‐process step with reasonable joint shear strength. Transmission electron microscopy‐electron energy loss spectroscopy elemental mapping analysis reveals that the joint interface is Cu oxide. The outward diffusion of Cu driven by the nanoscale Kirkendall effect is believed to enhance the joining process. By controlling the environment, temperature, and duration, joined Cu2O or CuO nanotube stacked chips can be achieved, which serve as a platform for the further development of nanostructured, stacked devices.
A Cu nanowire array is transformed into a Cu oxide nanotube array via the nanoscale Kirkendall effect after annealing at 200 °C for 60 min. Coupled with an applied load, this transformation can be used to join two nanostructure array chips in a single processing step. This approach enables the integration of Cu oxide nanotube arrays into a stacked device.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201202533</identifier><identifier>PMID: 23401318</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>ANNEALING PROCESSES ; Arrays ; COMPOSITES ; Copper ; copper nanowires ; COPPER OXIDE ; copper oxide nanotubes ; CUPRIC OXIDE ; diffusion ; JOINING ; Kirkendall effect ; MICROSTRUCTURES ; Nanocomposites ; Nanomaterials ; Nanostructure ; Nanotechnology ; OXIDES ; PHASE TRANSFORMATIONS ; Transformations ; TUBE</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2013-08, Vol.9 (15), p.2546-2552</ispartof><rights>Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4443-50a20ceb66d75c03414a59fb92173c8b6939a0a50afbf6a0e1516ad90a5079753</citedby><cites>FETCH-LOGICAL-c4443-50a20ceb66d75c03414a59fb92173c8b6939a0a50afbf6a0e1516ad90a5079753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23401318$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chun, Shu Rong</creatorcontrib><creatorcontrib>Sasangka, Wardhana Aji</creatorcontrib><creatorcontrib>Ng, Mei Zhen</creatorcontrib><creatorcontrib>Liu, Qing</creatorcontrib><creatorcontrib>Du, Anyan</creatorcontrib><creatorcontrib>Zhu, Jie</creatorcontrib><creatorcontrib>Ng, Chee Mang</creatorcontrib><creatorcontrib>Liu, Zhi Qiang</creatorcontrib><creatorcontrib>Chiam, Sing Yang</creatorcontrib><creatorcontrib>Gan, Chee Lip</creatorcontrib><title>Joining Copper Oxide Nanotube Arrays Driven by the Nanoscale Kirkendall Effect</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Various annealing conditions (environment, temperature, and duration) are applied to study the nanoscale Kirkendall effect of copper (Cu) nanowire (NW) arrays on a Si substrate. The results show that an appropriate amount of oxygen supply is crucial for uniform transformation from Cu NWs (average diameter ∼50 nm) into Cu oxide nanotube arrays. An annealing duration of 30 min at 200 °C in a low vacuum environment reveals that the voids are not uniformly distributed at the Cu/Cu oxide interface. This suggests that void growth is due to surface diffusion of Cu along void surfaces. Annealing above 200 °C for 60 min resulted in complete transformation from Cu NWs into Cu oxide nanotubes. X‐ray photoelectron spectroscopy characterization indicates that the Cu oxides formed at 200 °C and 300 °C are Cu2O and CuO, respectively. It is demonstrated that the transformation from Cu NW arrays into Cu oxide nanotube arrays can be combined with the joining of stacked Si chips in a single‐process step with reasonable joint shear strength. Transmission electron microscopy‐electron energy loss spectroscopy elemental mapping analysis reveals that the joint interface is Cu oxide. The outward diffusion of Cu driven by the nanoscale Kirkendall effect is believed to enhance the joining process. By controlling the environment, temperature, and duration, joined Cu2O or CuO nanotube stacked chips can be achieved, which serve as a platform for the further development of nanostructured, stacked devices.
A Cu nanowire array is transformed into a Cu oxide nanotube array via the nanoscale Kirkendall effect after annealing at 200 °C for 60 min. Coupled with an applied load, this transformation can be used to join two nanostructure array chips in a single processing step. This approach enables the integration of Cu oxide nanotube arrays into a stacked device.</description><subject>ANNEALING PROCESSES</subject><subject>Arrays</subject><subject>COMPOSITES</subject><subject>Copper</subject><subject>copper nanowires</subject><subject>COPPER OXIDE</subject><subject>copper oxide nanotubes</subject><subject>CUPRIC OXIDE</subject><subject>diffusion</subject><subject>JOINING</subject><subject>Kirkendall effect</subject><subject>MICROSTRUCTURES</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>OXIDES</subject><subject>PHASE TRANSFORMATIONS</subject><subject>Transformations</subject><subject>TUBE</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqN0c1P2zAYBnALbQLGduWILO2ySzp_xR9HVBhsK0UbQ0i9WE7yBgxu0tkJo__9UoVVaJftZMv-vY_06kHokJIJJYR9TMsQJoxQRljO-Q7ap5LyTGpmXm3vlOyhNyndE8IpE2oX7TEuCOVU76P5l9Y3vrnF03a1gogvn3wFeO6atusLwMcxunXCJ9E_QoOLNe7uxt9UugD4q48P0FQuBHxa11B2b9Hr2oUE757PA3T96fTH9DybXZ59nh7PslIIwbOcOEZKKKSsVF4SLqhwuakLw6jipS6k4cYRN7C6qKUjQHMqXWU2T8qonB-gD2PuKrY_e0idXfpUQgiugbZPlgpulGDa_A-lWgpNlB7o-7_ofdvHZlhko5SmUmo5qMmoytimFKG2q-iXLq4tJXZTit2UYrelDANHz7F9sYRqy_-0MAAzgl8-wPofcfbqYjZ7GZ6Nsz518LSddfHBSsVVbm_mZ_abXCwWVxff7Q3_DUWNpao</recordid><startdate>20130812</startdate><enddate>20130812</enddate><creator>Chun, Shu Rong</creator><creator>Sasangka, Wardhana Aji</creator><creator>Ng, Mei Zhen</creator><creator>Liu, Qing</creator><creator>Du, Anyan</creator><creator>Zhu, Jie</creator><creator>Ng, Chee Mang</creator><creator>Liu, Zhi Qiang</creator><creator>Chiam, Sing Yang</creator><creator>Gan, Chee Lip</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope><scope>H8G</scope></search><sort><creationdate>20130812</creationdate><title>Joining Copper Oxide Nanotube Arrays Driven by the Nanoscale Kirkendall Effect</title><author>Chun, Shu Rong ; Sasangka, Wardhana Aji ; Ng, Mei Zhen ; Liu, Qing ; Du, Anyan ; Zhu, Jie ; Ng, Chee Mang ; Liu, Zhi Qiang ; Chiam, Sing Yang ; Gan, Chee Lip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4443-50a20ceb66d75c03414a59fb92173c8b6939a0a50afbf6a0e1516ad90a5079753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>ANNEALING PROCESSES</topic><topic>Arrays</topic><topic>COMPOSITES</topic><topic>Copper</topic><topic>copper nanowires</topic><topic>COPPER OXIDE</topic><topic>copper oxide nanotubes</topic><topic>CUPRIC OXIDE</topic><topic>diffusion</topic><topic>JOINING</topic><topic>Kirkendall effect</topic><topic>MICROSTRUCTURES</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>OXIDES</topic><topic>PHASE TRANSFORMATIONS</topic><topic>Transformations</topic><topic>TUBE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chun, Shu Rong</creatorcontrib><creatorcontrib>Sasangka, Wardhana Aji</creatorcontrib><creatorcontrib>Ng, Mei Zhen</creatorcontrib><creatorcontrib>Liu, Qing</creatorcontrib><creatorcontrib>Du, Anyan</creatorcontrib><creatorcontrib>Zhu, Jie</creatorcontrib><creatorcontrib>Ng, Chee Mang</creatorcontrib><creatorcontrib>Liu, Zhi Qiang</creatorcontrib><creatorcontrib>Chiam, Sing Yang</creatorcontrib><creatorcontrib>Gan, Chee Lip</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chun, Shu Rong</au><au>Sasangka, Wardhana Aji</au><au>Ng, Mei Zhen</au><au>Liu, Qing</au><au>Du, Anyan</au><au>Zhu, Jie</au><au>Ng, Chee Mang</au><au>Liu, Zhi Qiang</au><au>Chiam, Sing Yang</au><au>Gan, Chee Lip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joining Copper Oxide Nanotube Arrays Driven by the Nanoscale Kirkendall Effect</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2013-08-12</date><risdate>2013</risdate><volume>9</volume><issue>15</issue><spage>2546</spage><epage>2552</epage><pages>2546-2552</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Various annealing conditions (environment, temperature, and duration) are applied to study the nanoscale Kirkendall effect of copper (Cu) nanowire (NW) arrays on a Si substrate. The results show that an appropriate amount of oxygen supply is crucial for uniform transformation from Cu NWs (average diameter ∼50 nm) into Cu oxide nanotube arrays. An annealing duration of 30 min at 200 °C in a low vacuum environment reveals that the voids are not uniformly distributed at the Cu/Cu oxide interface. This suggests that void growth is due to surface diffusion of Cu along void surfaces. Annealing above 200 °C for 60 min resulted in complete transformation from Cu NWs into Cu oxide nanotubes. X‐ray photoelectron spectroscopy characterization indicates that the Cu oxides formed at 200 °C and 300 °C are Cu2O and CuO, respectively. It is demonstrated that the transformation from Cu NW arrays into Cu oxide nanotube arrays can be combined with the joining of stacked Si chips in a single‐process step with reasonable joint shear strength. Transmission electron microscopy‐electron energy loss spectroscopy elemental mapping analysis reveals that the joint interface is Cu oxide. The outward diffusion of Cu driven by the nanoscale Kirkendall effect is believed to enhance the joining process. By controlling the environment, temperature, and duration, joined Cu2O or CuO nanotube stacked chips can be achieved, which serve as a platform for the further development of nanostructured, stacked devices.
A Cu nanowire array is transformed into a Cu oxide nanotube array via the nanoscale Kirkendall effect after annealing at 200 °C for 60 min. Coupled with an applied load, this transformation can be used to join two nanostructure array chips in a single processing step. This approach enables the integration of Cu oxide nanotube arrays into a stacked device.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>23401318</pmid><doi>10.1002/smll.201202533</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2013-08, Vol.9 (15), p.2546-2552 |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_1439742895 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | ANNEALING PROCESSES Arrays COMPOSITES Copper copper nanowires COPPER OXIDE copper oxide nanotubes CUPRIC OXIDE diffusion JOINING Kirkendall effect MICROSTRUCTURES Nanocomposites Nanomaterials Nanostructure Nanotechnology OXIDES PHASE TRANSFORMATIONS Transformations TUBE |
title | Joining Copper Oxide Nanotube Arrays Driven by the Nanoscale Kirkendall Effect |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A39%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joining%20Copper%20Oxide%20Nanotube%20Arrays%20Driven%20by%20the%20Nanoscale%20Kirkendall%20Effect&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Chun,%20Shu%20Rong&rft.date=2013-08-12&rft.volume=9&rft.issue=15&rft.spage=2546&rft.epage=2552&rft.pages=2546-2552&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201202533&rft_dat=%3Cproquest_cross%3E1418648078%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4443-50a20ceb66d75c03414a59fb92173c8b6939a0a50afbf6a0e1516ad90a5079753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1417816686&rft_id=info:pmid/23401318&rfr_iscdi=true |