Loading…

Joining Copper Oxide Nanotube Arrays Driven by the Nanoscale Kirkendall Effect

Various annealing conditions (environment, temperature, and duration) are applied to study the nanoscale Kirkendall effect of copper (Cu) nanowire (NW) arrays on a Si substrate. The results show that an appropriate amount of oxygen supply is crucial for uniform transformation from Cu NWs (average di...

Full description

Saved in:
Bibliographic Details
Published in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2013-08, Vol.9 (15), p.2546-2552
Main Authors: Chun, Shu Rong, Sasangka, Wardhana Aji, Ng, Mei Zhen, Liu, Qing, Du, Anyan, Zhu, Jie, Ng, Chee Mang, Liu, Zhi Qiang, Chiam, Sing Yang, Gan, Chee Lip
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4443-50a20ceb66d75c03414a59fb92173c8b6939a0a50afbf6a0e1516ad90a5079753
cites cdi_FETCH-LOGICAL-c4443-50a20ceb66d75c03414a59fb92173c8b6939a0a50afbf6a0e1516ad90a5079753
container_end_page 2552
container_issue 15
container_start_page 2546
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 9
creator Chun, Shu Rong
Sasangka, Wardhana Aji
Ng, Mei Zhen
Liu, Qing
Du, Anyan
Zhu, Jie
Ng, Chee Mang
Liu, Zhi Qiang
Chiam, Sing Yang
Gan, Chee Lip
description Various annealing conditions (environment, temperature, and duration) are applied to study the nanoscale Kirkendall effect of copper (Cu) nanowire (NW) arrays on a Si substrate. The results show that an appropriate amount of oxygen supply is crucial for uniform transformation from Cu NWs (average diameter ∼50 nm) into Cu oxide nanotube arrays. An annealing duration of 30 min at 200 °C in a low vacuum environment reveals that the voids are not uniformly distributed at the Cu/Cu oxide interface. This suggests that void growth is due to surface diffusion of Cu along void surfaces. Annealing above 200 °C for 60 min resulted in complete transformation from Cu NWs into Cu oxide nanotubes. X‐ray photoelectron spectroscopy characterization indicates that the Cu oxides formed at 200 °C and 300 °C are Cu2O and CuO, respectively. It is demonstrated that the transformation from Cu NW arrays into Cu oxide nanotube arrays can be combined with the joining of stacked Si chips in a single‐process step with reasonable joint shear strength. Transmission electron microscopy‐electron energy loss spectroscopy elemental mapping analysis reveals that the joint interface is Cu oxide. The outward diffusion of Cu driven by the nanoscale Kirkendall effect is believed to enhance the joining process. By controlling the environment, temperature, and duration, joined Cu2O or CuO nanotube stacked chips can be achieved, which serve as a platform for the further development of nanostructured, stacked devices. A Cu nanowire array is transformed into a Cu oxide nanotube array via the nanoscale Kirkendall effect after annealing at 200 °C for 60 min. Coupled with an applied load, this transformation can be used to join two nanostructure array chips in a single processing step. This approach enables the integration of Cu oxide nanotube arrays into a stacked device.
doi_str_mv 10.1002/smll.201202533
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439742895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1418648078</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4443-50a20ceb66d75c03414a59fb92173c8b6939a0a50afbf6a0e1516ad90a5079753</originalsourceid><addsrcrecordid>eNqN0c1P2zAYBnALbQLGduWILO2ySzp_xR9HVBhsK0UbQ0i9WE7yBgxu0tkJo__9UoVVaJftZMv-vY_06kHokJIJJYR9TMsQJoxQRljO-Q7ap5LyTGpmXm3vlOyhNyndE8IpE2oX7TEuCOVU76P5l9Y3vrnF03a1gogvn3wFeO6atusLwMcxunXCJ9E_QoOLNe7uxt9UugD4q48P0FQuBHxa11B2b9Hr2oUE757PA3T96fTH9DybXZ59nh7PslIIwbOcOEZKKKSsVF4SLqhwuakLw6jipS6k4cYRN7C6qKUjQHMqXWU2T8qonB-gD2PuKrY_e0idXfpUQgiugbZPlgpulGDa_A-lWgpNlB7o-7_ofdvHZlhko5SmUmo5qMmoytimFKG2q-iXLq4tJXZTit2UYrelDANHz7F9sYRqy_-0MAAzgl8-wPofcfbqYjZ7GZ6Nsz518LSddfHBSsVVbm_mZ_abXCwWVxff7Q3_DUWNpao</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1417816686</pqid></control><display><type>article</type><title>Joining Copper Oxide Nanotube Arrays Driven by the Nanoscale Kirkendall Effect</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Chun, Shu Rong ; Sasangka, Wardhana Aji ; Ng, Mei Zhen ; Liu, Qing ; Du, Anyan ; Zhu, Jie ; Ng, Chee Mang ; Liu, Zhi Qiang ; Chiam, Sing Yang ; Gan, Chee Lip</creator><creatorcontrib>Chun, Shu Rong ; Sasangka, Wardhana Aji ; Ng, Mei Zhen ; Liu, Qing ; Du, Anyan ; Zhu, Jie ; Ng, Chee Mang ; Liu, Zhi Qiang ; Chiam, Sing Yang ; Gan, Chee Lip</creatorcontrib><description>Various annealing conditions (environment, temperature, and duration) are applied to study the nanoscale Kirkendall effect of copper (Cu) nanowire (NW) arrays on a Si substrate. The results show that an appropriate amount of oxygen supply is crucial for uniform transformation from Cu NWs (average diameter ∼50 nm) into Cu oxide nanotube arrays. An annealing duration of 30 min at 200 °C in a low vacuum environment reveals that the voids are not uniformly distributed at the Cu/Cu oxide interface. This suggests that void growth is due to surface diffusion of Cu along void surfaces. Annealing above 200 °C for 60 min resulted in complete transformation from Cu NWs into Cu oxide nanotubes. X‐ray photoelectron spectroscopy characterization indicates that the Cu oxides formed at 200 °C and 300 °C are Cu2O and CuO, respectively. It is demonstrated that the transformation from Cu NW arrays into Cu oxide nanotube arrays can be combined with the joining of stacked Si chips in a single‐process step with reasonable joint shear strength. Transmission electron microscopy‐electron energy loss spectroscopy elemental mapping analysis reveals that the joint interface is Cu oxide. The outward diffusion of Cu driven by the nanoscale Kirkendall effect is believed to enhance the joining process. By controlling the environment, temperature, and duration, joined Cu2O or CuO nanotube stacked chips can be achieved, which serve as a platform for the further development of nanostructured, stacked devices. A Cu nanowire array is transformed into a Cu oxide nanotube array via the nanoscale Kirkendall effect after annealing at 200 °C for 60 min. Coupled with an applied load, this transformation can be used to join two nanostructure array chips in a single processing step. This approach enables the integration of Cu oxide nanotube arrays into a stacked device.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201202533</identifier><identifier>PMID: 23401318</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>ANNEALING PROCESSES ; Arrays ; COMPOSITES ; Copper ; copper nanowires ; COPPER OXIDE ; copper oxide nanotubes ; CUPRIC OXIDE ; diffusion ; JOINING ; Kirkendall effect ; MICROSTRUCTURES ; Nanocomposites ; Nanomaterials ; Nanostructure ; Nanotechnology ; OXIDES ; PHASE TRANSFORMATIONS ; Transformations ; TUBE</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2013-08, Vol.9 (15), p.2546-2552</ispartof><rights>Copyright © 2013 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2013 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>Copyright © 2013 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4443-50a20ceb66d75c03414a59fb92173c8b6939a0a50afbf6a0e1516ad90a5079753</citedby><cites>FETCH-LOGICAL-c4443-50a20ceb66d75c03414a59fb92173c8b6939a0a50afbf6a0e1516ad90a5079753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23401318$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chun, Shu Rong</creatorcontrib><creatorcontrib>Sasangka, Wardhana Aji</creatorcontrib><creatorcontrib>Ng, Mei Zhen</creatorcontrib><creatorcontrib>Liu, Qing</creatorcontrib><creatorcontrib>Du, Anyan</creatorcontrib><creatorcontrib>Zhu, Jie</creatorcontrib><creatorcontrib>Ng, Chee Mang</creatorcontrib><creatorcontrib>Liu, Zhi Qiang</creatorcontrib><creatorcontrib>Chiam, Sing Yang</creatorcontrib><creatorcontrib>Gan, Chee Lip</creatorcontrib><title>Joining Copper Oxide Nanotube Arrays Driven by the Nanoscale Kirkendall Effect</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Various annealing conditions (environment, temperature, and duration) are applied to study the nanoscale Kirkendall effect of copper (Cu) nanowire (NW) arrays on a Si substrate. The results show that an appropriate amount of oxygen supply is crucial for uniform transformation from Cu NWs (average diameter ∼50 nm) into Cu oxide nanotube arrays. An annealing duration of 30 min at 200 °C in a low vacuum environment reveals that the voids are not uniformly distributed at the Cu/Cu oxide interface. This suggests that void growth is due to surface diffusion of Cu along void surfaces. Annealing above 200 °C for 60 min resulted in complete transformation from Cu NWs into Cu oxide nanotubes. X‐ray photoelectron spectroscopy characterization indicates that the Cu oxides formed at 200 °C and 300 °C are Cu2O and CuO, respectively. It is demonstrated that the transformation from Cu NW arrays into Cu oxide nanotube arrays can be combined with the joining of stacked Si chips in a single‐process step with reasonable joint shear strength. Transmission electron microscopy‐electron energy loss spectroscopy elemental mapping analysis reveals that the joint interface is Cu oxide. The outward diffusion of Cu driven by the nanoscale Kirkendall effect is believed to enhance the joining process. By controlling the environment, temperature, and duration, joined Cu2O or CuO nanotube stacked chips can be achieved, which serve as a platform for the further development of nanostructured, stacked devices. A Cu nanowire array is transformed into a Cu oxide nanotube array via the nanoscale Kirkendall effect after annealing at 200 °C for 60 min. Coupled with an applied load, this transformation can be used to join two nanostructure array chips in a single processing step. This approach enables the integration of Cu oxide nanotube arrays into a stacked device.</description><subject>ANNEALING PROCESSES</subject><subject>Arrays</subject><subject>COMPOSITES</subject><subject>Copper</subject><subject>copper nanowires</subject><subject>COPPER OXIDE</subject><subject>copper oxide nanotubes</subject><subject>CUPRIC OXIDE</subject><subject>diffusion</subject><subject>JOINING</subject><subject>Kirkendall effect</subject><subject>MICROSTRUCTURES</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>OXIDES</subject><subject>PHASE TRANSFORMATIONS</subject><subject>Transformations</subject><subject>TUBE</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqN0c1P2zAYBnALbQLGduWILO2ySzp_xR9HVBhsK0UbQ0i9WE7yBgxu0tkJo__9UoVVaJftZMv-vY_06kHokJIJJYR9TMsQJoxQRljO-Q7ap5LyTGpmXm3vlOyhNyndE8IpE2oX7TEuCOVU76P5l9Y3vrnF03a1gogvn3wFeO6atusLwMcxunXCJ9E_QoOLNe7uxt9UugD4q48P0FQuBHxa11B2b9Hr2oUE757PA3T96fTH9DybXZ59nh7PslIIwbOcOEZKKKSsVF4SLqhwuakLw6jipS6k4cYRN7C6qKUjQHMqXWU2T8qonB-gD2PuKrY_e0idXfpUQgiugbZPlgpulGDa_A-lWgpNlB7o-7_ofdvHZlhko5SmUmo5qMmoytimFKG2q-iXLq4tJXZTit2UYrelDANHz7F9sYRqy_-0MAAzgl8-wPofcfbqYjZ7GZ6Nsz518LSddfHBSsVVbm_mZ_abXCwWVxff7Q3_DUWNpao</recordid><startdate>20130812</startdate><enddate>20130812</enddate><creator>Chun, Shu Rong</creator><creator>Sasangka, Wardhana Aji</creator><creator>Ng, Mei Zhen</creator><creator>Liu, Qing</creator><creator>Du, Anyan</creator><creator>Zhu, Jie</creator><creator>Ng, Chee Mang</creator><creator>Liu, Zhi Qiang</creator><creator>Chiam, Sing Yang</creator><creator>Gan, Chee Lip</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope><scope>H8G</scope></search><sort><creationdate>20130812</creationdate><title>Joining Copper Oxide Nanotube Arrays Driven by the Nanoscale Kirkendall Effect</title><author>Chun, Shu Rong ; Sasangka, Wardhana Aji ; Ng, Mei Zhen ; Liu, Qing ; Du, Anyan ; Zhu, Jie ; Ng, Chee Mang ; Liu, Zhi Qiang ; Chiam, Sing Yang ; Gan, Chee Lip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4443-50a20ceb66d75c03414a59fb92173c8b6939a0a50afbf6a0e1516ad90a5079753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>ANNEALING PROCESSES</topic><topic>Arrays</topic><topic>COMPOSITES</topic><topic>Copper</topic><topic>copper nanowires</topic><topic>COPPER OXIDE</topic><topic>copper oxide nanotubes</topic><topic>CUPRIC OXIDE</topic><topic>diffusion</topic><topic>JOINING</topic><topic>Kirkendall effect</topic><topic>MICROSTRUCTURES</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>OXIDES</topic><topic>PHASE TRANSFORMATIONS</topic><topic>Transformations</topic><topic>TUBE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chun, Shu Rong</creatorcontrib><creatorcontrib>Sasangka, Wardhana Aji</creatorcontrib><creatorcontrib>Ng, Mei Zhen</creatorcontrib><creatorcontrib>Liu, Qing</creatorcontrib><creatorcontrib>Du, Anyan</creatorcontrib><creatorcontrib>Zhu, Jie</creatorcontrib><creatorcontrib>Ng, Chee Mang</creatorcontrib><creatorcontrib>Liu, Zhi Qiang</creatorcontrib><creatorcontrib>Chiam, Sing Yang</creatorcontrib><creatorcontrib>Gan, Chee Lip</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chun, Shu Rong</au><au>Sasangka, Wardhana Aji</au><au>Ng, Mei Zhen</au><au>Liu, Qing</au><au>Du, Anyan</au><au>Zhu, Jie</au><au>Ng, Chee Mang</au><au>Liu, Zhi Qiang</au><au>Chiam, Sing Yang</au><au>Gan, Chee Lip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joining Copper Oxide Nanotube Arrays Driven by the Nanoscale Kirkendall Effect</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2013-08-12</date><risdate>2013</risdate><volume>9</volume><issue>15</issue><spage>2546</spage><epage>2552</epage><pages>2546-2552</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Various annealing conditions (environment, temperature, and duration) are applied to study the nanoscale Kirkendall effect of copper (Cu) nanowire (NW) arrays on a Si substrate. The results show that an appropriate amount of oxygen supply is crucial for uniform transformation from Cu NWs (average diameter ∼50 nm) into Cu oxide nanotube arrays. An annealing duration of 30 min at 200 °C in a low vacuum environment reveals that the voids are not uniformly distributed at the Cu/Cu oxide interface. This suggests that void growth is due to surface diffusion of Cu along void surfaces. Annealing above 200 °C for 60 min resulted in complete transformation from Cu NWs into Cu oxide nanotubes. X‐ray photoelectron spectroscopy characterization indicates that the Cu oxides formed at 200 °C and 300 °C are Cu2O and CuO, respectively. It is demonstrated that the transformation from Cu NW arrays into Cu oxide nanotube arrays can be combined with the joining of stacked Si chips in a single‐process step with reasonable joint shear strength. Transmission electron microscopy‐electron energy loss spectroscopy elemental mapping analysis reveals that the joint interface is Cu oxide. The outward diffusion of Cu driven by the nanoscale Kirkendall effect is believed to enhance the joining process. By controlling the environment, temperature, and duration, joined Cu2O or CuO nanotube stacked chips can be achieved, which serve as a platform for the further development of nanostructured, stacked devices. A Cu nanowire array is transformed into a Cu oxide nanotube array via the nanoscale Kirkendall effect after annealing at 200 °C for 60 min. Coupled with an applied load, this transformation can be used to join two nanostructure array chips in a single processing step. This approach enables the integration of Cu oxide nanotube arrays into a stacked device.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>23401318</pmid><doi>10.1002/smll.201202533</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2013-08, Vol.9 (15), p.2546-2552
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_1439742895
source Wiley-Blackwell Read & Publish Collection
subjects ANNEALING PROCESSES
Arrays
COMPOSITES
Copper
copper nanowires
COPPER OXIDE
copper oxide nanotubes
CUPRIC OXIDE
diffusion
JOINING
Kirkendall effect
MICROSTRUCTURES
Nanocomposites
Nanomaterials
Nanostructure
Nanotechnology
OXIDES
PHASE TRANSFORMATIONS
Transformations
TUBE
title Joining Copper Oxide Nanotube Arrays Driven by the Nanoscale Kirkendall Effect
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A39%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joining%20Copper%20Oxide%20Nanotube%20Arrays%20Driven%20by%20the%20Nanoscale%20Kirkendall%20Effect&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Chun,%20Shu%20Rong&rft.date=2013-08-12&rft.volume=9&rft.issue=15&rft.spage=2546&rft.epage=2552&rft.pages=2546-2552&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201202533&rft_dat=%3Cproquest_cross%3E1418648078%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4443-50a20ceb66d75c03414a59fb92173c8b6939a0a50afbf6a0e1516ad90a5079753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1417816686&rft_id=info:pmid/23401318&rfr_iscdi=true