Loading…

Secondary dopants modified PEDOT-sulfonated poly(imide)s for high-temperature range application

Poly(3,4‐ethylenedioxythiophene) (PEDOT) was polymerized using sulfonated poly(amic acid)s templates (SPAA1 and SPAA2) by batch operation. The new method was invented to enhance conductivities (ca. 100 ‐ to 2000‐fold) and with less reaction time from previous work (7 days vs. 3 days). Moreover, to i...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied polymer science 2013-06, Vol.128 (6), p.3840-3845
Main Authors: Srisuwan, Suttisak, Ding, Yujie, Mamangun, Donna, Thongyai, Supakanok, Praserthdam, Piyasan, Sotzing, Gregory A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Poly(3,4‐ethylenedioxythiophene) (PEDOT) was polymerized using sulfonated poly(amic acid)s templates (SPAA1 and SPAA2) by batch operation. The new method was invented to enhance conductivities (ca. 100 ‐ to 2000‐fold) and with less reaction time from previous work (7 days vs. 3 days). Moreover, to increase the conductivity, many dopants were introduced as secondary doping compared with DMF, D‐sorbitol, and surfynol that were previously used. After annealing at 180°C for 10 min, PEDOT‐SPAA1 and PEDOT‐SPAA2 doped with benzo‐1,4‐dioxan and quinoxaline showed the increase in conductivity by higher percentage than any other systems, especially doped with D‐sorbitol and surfynol. These showed the promising tendency to develop the annealing activated superior conductivity materials after further modifying the conducting film forming processes. However, PEDOT‐SPAAs doped with benzo‐1,4‐dioxan, imidazole and quinoxaline via annealed at 180°C for 10 min were found to be more conductive than doped with DMF, but still lower conductive than doped with D‐sorbitol and surfynol. In terms of particle size, the stable aqueous dispersions of conducting polymers prepared were comparable to polystyrene sulfonate template. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013
ISSN:0021-8995
1097-4628
DOI:10.1002/app.38593