Loading…

Temperature and pH effects on the stability and rheological behavior of the aqueous suspensions of smart polymers based on N-isopropylacrylamide, chitosan, and acrylic acid

This study describes the stability and rheological behavior of suspensions of poly(N‐isopropylacrylamide) (PNIPAM), poly(N‐isopropylacrylamide)‐chitosan (PNIPAM‐CS), and poly(N‐isopropylacrylamide)‐chitosan‐poly(acrylic acid) (PNIPAM‐CS‐PAA) crosslinked particles sensitive to pH and temperature. The...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied polymer science 2013-07, Vol.129 (1), p.334-345
Main Authors: do Nascimento Marques, Nívia, Curti, Priscila Schroeder, da Silva Maia, Ana Maria, Balaban, Rosangela de Carvalho
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study describes the stability and rheological behavior of suspensions of poly(N‐isopropylacrylamide) (PNIPAM), poly(N‐isopropylacrylamide)‐chitosan (PNIPAM‐CS), and poly(N‐isopropylacrylamide)‐chitosan‐poly(acrylic acid) (PNIPAM‐CS‐PAA) crosslinked particles sensitive to pH and temperature. These dual‐sensitive materials were simply obtained by one‐pot method, via free‐radical precipitation copolymerization with potassium persulfate, using N,N′‐methylenebisacrylamide as a crosslinking agent. Incorporation of the precursor materials into the chemical networks was confirmed by elementary analysis and infrared spectroscopy. The influence of external stimuli such as pH and temperature, or both, on particle behavior was investigated through rheological measurements, visual stability tests, and analytical centrifugation. The PNIPAM‐CS particles showed higher stability in acid and neutral media, whereas PNIPAM‐CS‐PAA particles were more stable in neutral and alkaline media, both below and above the lower critical solution temperature of PNIPAM (stability data). This is due to different interparticle interactions as well as those between the particles and the medium (also evidenced by rheological data), which were also influenced by the pH and temperature of the medium. Based on the results obtained, we found that the introduction of pH‐sensitive polymers to crosslinked PNIPAM particles not only produced dual‐sensitive materials but also allowed particle stability to be adjusted, making phase separation faster or slower, depending on the desired application. Thus, it is possible to adapt the material to different media. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013
ISSN:0021-8995
1097-4628
DOI:10.1002/app.38750