Loading…

Microstructural Parameters and Their Effect on the Indentation Hardness of Electrodeposited and Annealed Nickel-Iron Micro-Specimens

Using the direct‐LIGA technology, nickel–iron micro‐specimens are serially produced by a micro‐gear drive manufacturer and subsequently annealed within the temperature range between 180 and 800 °C. The microstructure (grain size, lattice strain, and texture) is characterized using XRD measurements....

Full description

Saved in:
Bibliographic Details
Published in:Advanced engineering materials 2013-06, Vol.15 (6), p.442-448
Main Authors: Schmitt, Martin-T., Hoffmann, Joachim E., Eifler, Dietmar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3903-86ed3da8bbd6febf3579d49f14eb7ba53d1047cd2ea3ea1524150b8ea0c677833
cites cdi_FETCH-LOGICAL-c3903-86ed3da8bbd6febf3579d49f14eb7ba53d1047cd2ea3ea1524150b8ea0c677833
container_end_page 448
container_issue 6
container_start_page 442
container_title Advanced engineering materials
container_volume 15
creator Schmitt, Martin-T.
Hoffmann, Joachim E.
Eifler, Dietmar
description Using the direct‐LIGA technology, nickel–iron micro‐specimens are serially produced by a micro‐gear drive manufacturer and subsequently annealed within the temperature range between 180 and 800 °C. The microstructure (grain size, lattice strain, and texture) is characterized using XRD measurements. Following electrodeposition, nano‐crystalline microstructures result with grain size of approximately 10 nm. The transmission electron microscope images confirm the XRD results. The lattice strain decreases in the temperature range from 200 to 300 °C and grain growth results for an annealing temperature from approximately 260 °C. The annealing treatment produced no essential changes in the material's texture. Analysis of the indentation hardness and indentation modulus demonstrates considerable changes above 200 °C. Using the direct‐LIGA technology, nickel–iron micro‐specimens are serially produced by a micro‐gear drive manufacturer and subsequently annealed within the temperature range between 180 and 800 °C. The microstructure (grain size, lattice strain, and texture) is characterized using XRD measurements. Following electrodeposition, nano‐crystalline microstructures result with grain size of approximately 10 nm. The transmission electron microscope images confirm the XRD results. The lattice strain decreases in the temperature range from 200 to 300 °C and grain growth results for an annealing temperature from approximately 260 °C. The annealing treatment produced no essential changes in the material's texture. Analysis of the indentation hardness and indentation modulus demonstrates considerable changes above 200 °C.
doi_str_mv 10.1002/adem.201200253
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439757387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1439757387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3903-86ed3da8bbd6febf3579d49f14eb7ba53d1047cd2ea3ea1524150b8ea0c677833</originalsourceid><addsrcrecordid>eNqFkEFvEzEQhVcIJErh2rMvSFw22Otde_cYlTSNlBaqFkXqxZq1x6rprjfYjqB3fjhOU0XcOM086b03mq8ozhidMUqrz2BwnFWUVVk0_FVxwppKlpWo29d5r3lbMtGIt8W7GH9Qyhhl_KT4c-V0mGIKO512AQbyDQKMmDBEAt6Quwd0gSysRZ3I5El6QLLyBn2C5LK-hGA8xkgmSxZDNoXJ4HaKLqF5Lph7jzBkce30Iw7lKuTU89Hydovajejj--KNhSHih5d5Wny_WNydX5brr8vV-Xxdat5RXrYCDTfQ9r0RFnvLG9mZurOsxl720HDDaC21qRA4Qv6-Zg3tWwSqhZQt56fFp0PvNkw_dxiTGl3UOAzgcdpFlSF1spG8ldk6O1j3dGJAq7bBjRCeFKNqj1vtcasj7hz4-NINUcNgA3jt4jFVybpldSOyrzv4frkBn_7TquZfFlf_3igPWRcT_j5mITwqIbls1OZ6qZabtVjerzfqhv8F2-WitQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1439757387</pqid></control><display><type>article</type><title>Microstructural Parameters and Their Effect on the Indentation Hardness of Electrodeposited and Annealed Nickel-Iron Micro-Specimens</title><source>Wiley</source><creator>Schmitt, Martin-T. ; Hoffmann, Joachim E. ; Eifler, Dietmar</creator><creatorcontrib>Schmitt, Martin-T. ; Hoffmann, Joachim E. ; Eifler, Dietmar</creatorcontrib><description>Using the direct‐LIGA technology, nickel–iron micro‐specimens are serially produced by a micro‐gear drive manufacturer and subsequently annealed within the temperature range between 180 and 800 °C. The microstructure (grain size, lattice strain, and texture) is characterized using XRD measurements. Following electrodeposition, nano‐crystalline microstructures result with grain size of approximately 10 nm. The transmission electron microscope images confirm the XRD results. The lattice strain decreases in the temperature range from 200 to 300 °C and grain growth results for an annealing temperature from approximately 260 °C. The annealing treatment produced no essential changes in the material's texture. Analysis of the indentation hardness and indentation modulus demonstrates considerable changes above 200 °C. Using the direct‐LIGA technology, nickel–iron micro‐specimens are serially produced by a micro‐gear drive manufacturer and subsequently annealed within the temperature range between 180 and 800 °C. The microstructure (grain size, lattice strain, and texture) is characterized using XRD measurements. Following electrodeposition, nano‐crystalline microstructures result with grain size of approximately 10 nm. The transmission electron microscope images confirm the XRD results. The lattice strain decreases in the temperature range from 200 to 300 °C and grain growth results for an annealing temperature from approximately 260 °C. The annealing treatment produced no essential changes in the material's texture. Analysis of the indentation hardness and indentation modulus demonstrates considerable changes above 200 °C.</description><identifier>ISSN: 1438-1656</identifier><identifier>EISSN: 1527-2648</identifier><identifier>DOI: 10.1002/adem.201200253</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Annealing ; Condensed matter: structure, mechanical and thermal properties ; Exact sciences and technology ; Grain size ; Indentation ; Lattice strain ; Mechanical and acoustical properties of condensed matter ; Mechanical properties of nanoscale materials ; Microstructure ; Nanocrystals ; Physics ; Surface layer ; Texture</subject><ispartof>Advanced engineering materials, 2013-06, Vol.15 (6), p.442-448</ispartof><rights>Copyright © 2013 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3903-86ed3da8bbd6febf3579d49f14eb7ba53d1047cd2ea3ea1524150b8ea0c677833</citedby><cites>FETCH-LOGICAL-c3903-86ed3da8bbd6febf3579d49f14eb7ba53d1047cd2ea3ea1524150b8ea0c677833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27481456$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Schmitt, Martin-T.</creatorcontrib><creatorcontrib>Hoffmann, Joachim E.</creatorcontrib><creatorcontrib>Eifler, Dietmar</creatorcontrib><title>Microstructural Parameters and Their Effect on the Indentation Hardness of Electrodeposited and Annealed Nickel-Iron Micro-Specimens</title><title>Advanced engineering materials</title><addtitle>Adv. Eng. Mater</addtitle><description>Using the direct‐LIGA technology, nickel–iron micro‐specimens are serially produced by a micro‐gear drive manufacturer and subsequently annealed within the temperature range between 180 and 800 °C. The microstructure (grain size, lattice strain, and texture) is characterized using XRD measurements. Following electrodeposition, nano‐crystalline microstructures result with grain size of approximately 10 nm. The transmission electron microscope images confirm the XRD results. The lattice strain decreases in the temperature range from 200 to 300 °C and grain growth results for an annealing temperature from approximately 260 °C. The annealing treatment produced no essential changes in the material's texture. Analysis of the indentation hardness and indentation modulus demonstrates considerable changes above 200 °C. Using the direct‐LIGA technology, nickel–iron micro‐specimens are serially produced by a micro‐gear drive manufacturer and subsequently annealed within the temperature range between 180 and 800 °C. The microstructure (grain size, lattice strain, and texture) is characterized using XRD measurements. Following electrodeposition, nano‐crystalline microstructures result with grain size of approximately 10 nm. The transmission electron microscope images confirm the XRD results. The lattice strain decreases in the temperature range from 200 to 300 °C and grain growth results for an annealing temperature from approximately 260 °C. The annealing treatment produced no essential changes in the material's texture. Analysis of the indentation hardness and indentation modulus demonstrates considerable changes above 200 °C.</description><subject>Annealing</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Exact sciences and technology</subject><subject>Grain size</subject><subject>Indentation</subject><subject>Lattice strain</subject><subject>Mechanical and acoustical properties of condensed matter</subject><subject>Mechanical properties of nanoscale materials</subject><subject>Microstructure</subject><subject>Nanocrystals</subject><subject>Physics</subject><subject>Surface layer</subject><subject>Texture</subject><issn>1438-1656</issn><issn>1527-2648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkEFvEzEQhVcIJErh2rMvSFw22Otde_cYlTSNlBaqFkXqxZq1x6rprjfYjqB3fjhOU0XcOM086b03mq8ozhidMUqrz2BwnFWUVVk0_FVxwppKlpWo29d5r3lbMtGIt8W7GH9Qyhhl_KT4c-V0mGIKO512AQbyDQKMmDBEAt6Quwd0gSysRZ3I5El6QLLyBn2C5LK-hGA8xkgmSxZDNoXJ4HaKLqF5Lph7jzBkce30Iw7lKuTU89Hydovajejj--KNhSHih5d5Wny_WNydX5brr8vV-Xxdat5RXrYCDTfQ9r0RFnvLG9mZurOsxl720HDDaC21qRA4Qv6-Zg3tWwSqhZQt56fFp0PvNkw_dxiTGl3UOAzgcdpFlSF1spG8ldk6O1j3dGJAq7bBjRCeFKNqj1vtcasj7hz4-NINUcNgA3jt4jFVybpldSOyrzv4frkBn_7TquZfFlf_3igPWRcT_j5mITwqIbls1OZ6qZabtVjerzfqhv8F2-WitQ</recordid><startdate>201306</startdate><enddate>201306</enddate><creator>Schmitt, Martin-T.</creator><creator>Hoffmann, Joachim E.</creator><creator>Eifler, Dietmar</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley-VCH</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201306</creationdate><title>Microstructural Parameters and Their Effect on the Indentation Hardness of Electrodeposited and Annealed Nickel-Iron Micro-Specimens</title><author>Schmitt, Martin-T. ; Hoffmann, Joachim E. ; Eifler, Dietmar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3903-86ed3da8bbd6febf3579d49f14eb7ba53d1047cd2ea3ea1524150b8ea0c677833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Annealing</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Exact sciences and technology</topic><topic>Grain size</topic><topic>Indentation</topic><topic>Lattice strain</topic><topic>Mechanical and acoustical properties of condensed matter</topic><topic>Mechanical properties of nanoscale materials</topic><topic>Microstructure</topic><topic>Nanocrystals</topic><topic>Physics</topic><topic>Surface layer</topic><topic>Texture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmitt, Martin-T.</creatorcontrib><creatorcontrib>Hoffmann, Joachim E.</creatorcontrib><creatorcontrib>Eifler, Dietmar</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced engineering materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmitt, Martin-T.</au><au>Hoffmann, Joachim E.</au><au>Eifler, Dietmar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructural Parameters and Their Effect on the Indentation Hardness of Electrodeposited and Annealed Nickel-Iron Micro-Specimens</atitle><jtitle>Advanced engineering materials</jtitle><addtitle>Adv. Eng. Mater</addtitle><date>2013-06</date><risdate>2013</risdate><volume>15</volume><issue>6</issue><spage>442</spage><epage>448</epage><pages>442-448</pages><issn>1438-1656</issn><eissn>1527-2648</eissn><abstract>Using the direct‐LIGA technology, nickel–iron micro‐specimens are serially produced by a micro‐gear drive manufacturer and subsequently annealed within the temperature range between 180 and 800 °C. The microstructure (grain size, lattice strain, and texture) is characterized using XRD measurements. Following electrodeposition, nano‐crystalline microstructures result with grain size of approximately 10 nm. The transmission electron microscope images confirm the XRD results. The lattice strain decreases in the temperature range from 200 to 300 °C and grain growth results for an annealing temperature from approximately 260 °C. The annealing treatment produced no essential changes in the material's texture. Analysis of the indentation hardness and indentation modulus demonstrates considerable changes above 200 °C. Using the direct‐LIGA technology, nickel–iron micro‐specimens are serially produced by a micro‐gear drive manufacturer and subsequently annealed within the temperature range between 180 and 800 °C. The microstructure (grain size, lattice strain, and texture) is characterized using XRD measurements. Following electrodeposition, nano‐crystalline microstructures result with grain size of approximately 10 nm. The transmission electron microscope images confirm the XRD results. The lattice strain decreases in the temperature range from 200 to 300 °C and grain growth results for an annealing temperature from approximately 260 °C. The annealing treatment produced no essential changes in the material's texture. Analysis of the indentation hardness and indentation modulus demonstrates considerable changes above 200 °C.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/adem.201200253</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1438-1656
ispartof Advanced engineering materials, 2013-06, Vol.15 (6), p.442-448
issn 1438-1656
1527-2648
language eng
recordid cdi_proquest_miscellaneous_1439757387
source Wiley
subjects Annealing
Condensed matter: structure, mechanical and thermal properties
Exact sciences and technology
Grain size
Indentation
Lattice strain
Mechanical and acoustical properties of condensed matter
Mechanical properties of nanoscale materials
Microstructure
Nanocrystals
Physics
Surface layer
Texture
title Microstructural Parameters and Their Effect on the Indentation Hardness of Electrodeposited and Annealed Nickel-Iron Micro-Specimens
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A13%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructural%20Parameters%20and%20Their%20Effect%20on%20the%20Indentation%20Hardness%20of%20Electrodeposited%20and%20Annealed%20Nickel-Iron%20Micro-Specimens&rft.jtitle=Advanced%20engineering%20materials&rft.au=Schmitt,%20Martin-T.&rft.date=2013-06&rft.volume=15&rft.issue=6&rft.spage=442&rft.epage=448&rft.pages=442-448&rft.issn=1438-1656&rft.eissn=1527-2648&rft_id=info:doi/10.1002/adem.201200253&rft_dat=%3Cproquest_cross%3E1439757387%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3903-86ed3da8bbd6febf3579d49f14eb7ba53d1047cd2ea3ea1524150b8ea0c677833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1439757387&rft_id=info:pmid/&rfr_iscdi=true