Loading…
Microstructural Parameters and Their Effect on the Indentation Hardness of Electrodeposited and Annealed Nickel-Iron Micro-Specimens
Using the direct‐LIGA technology, nickel–iron micro‐specimens are serially produced by a micro‐gear drive manufacturer and subsequently annealed within the temperature range between 180 and 800 °C. The microstructure (grain size, lattice strain, and texture) is characterized using XRD measurements....
Saved in:
Published in: | Advanced engineering materials 2013-06, Vol.15 (6), p.442-448 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3903-86ed3da8bbd6febf3579d49f14eb7ba53d1047cd2ea3ea1524150b8ea0c677833 |
---|---|
cites | cdi_FETCH-LOGICAL-c3903-86ed3da8bbd6febf3579d49f14eb7ba53d1047cd2ea3ea1524150b8ea0c677833 |
container_end_page | 448 |
container_issue | 6 |
container_start_page | 442 |
container_title | Advanced engineering materials |
container_volume | 15 |
creator | Schmitt, Martin-T. Hoffmann, Joachim E. Eifler, Dietmar |
description | Using the direct‐LIGA technology, nickel–iron micro‐specimens are serially produced by a micro‐gear drive manufacturer and subsequently annealed within the temperature range between 180 and 800 °C. The microstructure (grain size, lattice strain, and texture) is characterized using XRD measurements. Following electrodeposition, nano‐crystalline microstructures result with grain size of approximately 10 nm. The transmission electron microscope images confirm the XRD results. The lattice strain decreases in the temperature range from 200 to 300 °C and grain growth results for an annealing temperature from approximately 260 °C. The annealing treatment produced no essential changes in the material's texture. Analysis of the indentation hardness and indentation modulus demonstrates considerable changes above 200 °C.
Using the direct‐LIGA technology, nickel–iron micro‐specimens are serially produced by a micro‐gear drive manufacturer and subsequently annealed within the temperature range between 180 and 800 °C. The microstructure (grain size, lattice strain, and texture) is characterized using XRD measurements. Following electrodeposition, nano‐crystalline microstructures result with grain size of approximately 10 nm. The transmission electron microscope images confirm the XRD results. The lattice strain decreases in the temperature range from 200 to 300 °C and grain growth results for an annealing temperature from approximately 260 °C. The annealing treatment produced no essential changes in the material's texture. Analysis of the indentation hardness and indentation modulus demonstrates considerable changes above 200 °C. |
doi_str_mv | 10.1002/adem.201200253 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439757387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1439757387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3903-86ed3da8bbd6febf3579d49f14eb7ba53d1047cd2ea3ea1524150b8ea0c677833</originalsourceid><addsrcrecordid>eNqFkEFvEzEQhVcIJErh2rMvSFw22Otde_cYlTSNlBaqFkXqxZq1x6rprjfYjqB3fjhOU0XcOM086b03mq8ozhidMUqrz2BwnFWUVVk0_FVxwppKlpWo29d5r3lbMtGIt8W7GH9Qyhhl_KT4c-V0mGIKO512AQbyDQKMmDBEAt6Quwd0gSysRZ3I5El6QLLyBn2C5LK-hGA8xkgmSxZDNoXJ4HaKLqF5Lph7jzBkce30Iw7lKuTU89Hydovajejj--KNhSHih5d5Wny_WNydX5brr8vV-Xxdat5RXrYCDTfQ9r0RFnvLG9mZurOsxl720HDDaC21qRA4Qv6-Zg3tWwSqhZQt56fFp0PvNkw_dxiTGl3UOAzgcdpFlSF1spG8ldk6O1j3dGJAq7bBjRCeFKNqj1vtcasj7hz4-NINUcNgA3jt4jFVybpldSOyrzv4frkBn_7TquZfFlf_3igPWRcT_j5mITwqIbls1OZ6qZabtVjerzfqhv8F2-WitQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1439757387</pqid></control><display><type>article</type><title>Microstructural Parameters and Their Effect on the Indentation Hardness of Electrodeposited and Annealed Nickel-Iron Micro-Specimens</title><source>Wiley</source><creator>Schmitt, Martin-T. ; Hoffmann, Joachim E. ; Eifler, Dietmar</creator><creatorcontrib>Schmitt, Martin-T. ; Hoffmann, Joachim E. ; Eifler, Dietmar</creatorcontrib><description>Using the direct‐LIGA technology, nickel–iron micro‐specimens are serially produced by a micro‐gear drive manufacturer and subsequently annealed within the temperature range between 180 and 800 °C. The microstructure (grain size, lattice strain, and texture) is characterized using XRD measurements. Following electrodeposition, nano‐crystalline microstructures result with grain size of approximately 10 nm. The transmission electron microscope images confirm the XRD results. The lattice strain decreases in the temperature range from 200 to 300 °C and grain growth results for an annealing temperature from approximately 260 °C. The annealing treatment produced no essential changes in the material's texture. Analysis of the indentation hardness and indentation modulus demonstrates considerable changes above 200 °C.
Using the direct‐LIGA technology, nickel–iron micro‐specimens are serially produced by a micro‐gear drive manufacturer and subsequently annealed within the temperature range between 180 and 800 °C. The microstructure (grain size, lattice strain, and texture) is characterized using XRD measurements. Following electrodeposition, nano‐crystalline microstructures result with grain size of approximately 10 nm. The transmission electron microscope images confirm the XRD results. The lattice strain decreases in the temperature range from 200 to 300 °C and grain growth results for an annealing temperature from approximately 260 °C. The annealing treatment produced no essential changes in the material's texture. Analysis of the indentation hardness and indentation modulus demonstrates considerable changes above 200 °C.</description><identifier>ISSN: 1438-1656</identifier><identifier>EISSN: 1527-2648</identifier><identifier>DOI: 10.1002/adem.201200253</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Annealing ; Condensed matter: structure, mechanical and thermal properties ; Exact sciences and technology ; Grain size ; Indentation ; Lattice strain ; Mechanical and acoustical properties of condensed matter ; Mechanical properties of nanoscale materials ; Microstructure ; Nanocrystals ; Physics ; Surface layer ; Texture</subject><ispartof>Advanced engineering materials, 2013-06, Vol.15 (6), p.442-448</ispartof><rights>Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3903-86ed3da8bbd6febf3579d49f14eb7ba53d1047cd2ea3ea1524150b8ea0c677833</citedby><cites>FETCH-LOGICAL-c3903-86ed3da8bbd6febf3579d49f14eb7ba53d1047cd2ea3ea1524150b8ea0c677833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27481456$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Schmitt, Martin-T.</creatorcontrib><creatorcontrib>Hoffmann, Joachim E.</creatorcontrib><creatorcontrib>Eifler, Dietmar</creatorcontrib><title>Microstructural Parameters and Their Effect on the Indentation Hardness of Electrodeposited and Annealed Nickel-Iron Micro-Specimens</title><title>Advanced engineering materials</title><addtitle>Adv. Eng. Mater</addtitle><description>Using the direct‐LIGA technology, nickel–iron micro‐specimens are serially produced by a micro‐gear drive manufacturer and subsequently annealed within the temperature range between 180 and 800 °C. The microstructure (grain size, lattice strain, and texture) is characterized using XRD measurements. Following electrodeposition, nano‐crystalline microstructures result with grain size of approximately 10 nm. The transmission electron microscope images confirm the XRD results. The lattice strain decreases in the temperature range from 200 to 300 °C and grain growth results for an annealing temperature from approximately 260 °C. The annealing treatment produced no essential changes in the material's texture. Analysis of the indentation hardness and indentation modulus demonstrates considerable changes above 200 °C.
Using the direct‐LIGA technology, nickel–iron micro‐specimens are serially produced by a micro‐gear drive manufacturer and subsequently annealed within the temperature range between 180 and 800 °C. The microstructure (grain size, lattice strain, and texture) is characterized using XRD measurements. Following electrodeposition, nano‐crystalline microstructures result with grain size of approximately 10 nm. The transmission electron microscope images confirm the XRD results. The lattice strain decreases in the temperature range from 200 to 300 °C and grain growth results for an annealing temperature from approximately 260 °C. The annealing treatment produced no essential changes in the material's texture. Analysis of the indentation hardness and indentation modulus demonstrates considerable changes above 200 °C.</description><subject>Annealing</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Exact sciences and technology</subject><subject>Grain size</subject><subject>Indentation</subject><subject>Lattice strain</subject><subject>Mechanical and acoustical properties of condensed matter</subject><subject>Mechanical properties of nanoscale materials</subject><subject>Microstructure</subject><subject>Nanocrystals</subject><subject>Physics</subject><subject>Surface layer</subject><subject>Texture</subject><issn>1438-1656</issn><issn>1527-2648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkEFvEzEQhVcIJErh2rMvSFw22Otde_cYlTSNlBaqFkXqxZq1x6rprjfYjqB3fjhOU0XcOM086b03mq8ozhidMUqrz2BwnFWUVVk0_FVxwppKlpWo29d5r3lbMtGIt8W7GH9Qyhhl_KT4c-V0mGIKO512AQbyDQKMmDBEAt6Quwd0gSysRZ3I5El6QLLyBn2C5LK-hGA8xkgmSxZDNoXJ4HaKLqF5Lph7jzBkce30Iw7lKuTU89Hydovajejj--KNhSHih5d5Wny_WNydX5brr8vV-Xxdat5RXrYCDTfQ9r0RFnvLG9mZurOsxl720HDDaC21qRA4Qv6-Zg3tWwSqhZQt56fFp0PvNkw_dxiTGl3UOAzgcdpFlSF1spG8ldk6O1j3dGJAq7bBjRCeFKNqj1vtcasj7hz4-NINUcNgA3jt4jFVybpldSOyrzv4frkBn_7TquZfFlf_3igPWRcT_j5mITwqIbls1OZ6qZabtVjerzfqhv8F2-WitQ</recordid><startdate>201306</startdate><enddate>201306</enddate><creator>Schmitt, Martin-T.</creator><creator>Hoffmann, Joachim E.</creator><creator>Eifler, Dietmar</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley-VCH</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201306</creationdate><title>Microstructural Parameters and Their Effect on the Indentation Hardness of Electrodeposited and Annealed Nickel-Iron Micro-Specimens</title><author>Schmitt, Martin-T. ; Hoffmann, Joachim E. ; Eifler, Dietmar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3903-86ed3da8bbd6febf3579d49f14eb7ba53d1047cd2ea3ea1524150b8ea0c677833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Annealing</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Exact sciences and technology</topic><topic>Grain size</topic><topic>Indentation</topic><topic>Lattice strain</topic><topic>Mechanical and acoustical properties of condensed matter</topic><topic>Mechanical properties of nanoscale materials</topic><topic>Microstructure</topic><topic>Nanocrystals</topic><topic>Physics</topic><topic>Surface layer</topic><topic>Texture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmitt, Martin-T.</creatorcontrib><creatorcontrib>Hoffmann, Joachim E.</creatorcontrib><creatorcontrib>Eifler, Dietmar</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced engineering materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmitt, Martin-T.</au><au>Hoffmann, Joachim E.</au><au>Eifler, Dietmar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructural Parameters and Their Effect on the Indentation Hardness of Electrodeposited and Annealed Nickel-Iron Micro-Specimens</atitle><jtitle>Advanced engineering materials</jtitle><addtitle>Adv. Eng. Mater</addtitle><date>2013-06</date><risdate>2013</risdate><volume>15</volume><issue>6</issue><spage>442</spage><epage>448</epage><pages>442-448</pages><issn>1438-1656</issn><eissn>1527-2648</eissn><abstract>Using the direct‐LIGA technology, nickel–iron micro‐specimens are serially produced by a micro‐gear drive manufacturer and subsequently annealed within the temperature range between 180 and 800 °C. The microstructure (grain size, lattice strain, and texture) is characterized using XRD measurements. Following electrodeposition, nano‐crystalline microstructures result with grain size of approximately 10 nm. The transmission electron microscope images confirm the XRD results. The lattice strain decreases in the temperature range from 200 to 300 °C and grain growth results for an annealing temperature from approximately 260 °C. The annealing treatment produced no essential changes in the material's texture. Analysis of the indentation hardness and indentation modulus demonstrates considerable changes above 200 °C.
Using the direct‐LIGA technology, nickel–iron micro‐specimens are serially produced by a micro‐gear drive manufacturer and subsequently annealed within the temperature range between 180 and 800 °C. The microstructure (grain size, lattice strain, and texture) is characterized using XRD measurements. Following electrodeposition, nano‐crystalline microstructures result with grain size of approximately 10 nm. The transmission electron microscope images confirm the XRD results. The lattice strain decreases in the temperature range from 200 to 300 °C and grain growth results for an annealing temperature from approximately 260 °C. The annealing treatment produced no essential changes in the material's texture. Analysis of the indentation hardness and indentation modulus demonstrates considerable changes above 200 °C.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/adem.201200253</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1438-1656 |
ispartof | Advanced engineering materials, 2013-06, Vol.15 (6), p.442-448 |
issn | 1438-1656 1527-2648 |
language | eng |
recordid | cdi_proquest_miscellaneous_1439757387 |
source | Wiley |
subjects | Annealing Condensed matter: structure, mechanical and thermal properties Exact sciences and technology Grain size Indentation Lattice strain Mechanical and acoustical properties of condensed matter Mechanical properties of nanoscale materials Microstructure Nanocrystals Physics Surface layer Texture |
title | Microstructural Parameters and Their Effect on the Indentation Hardness of Electrodeposited and Annealed Nickel-Iron Micro-Specimens |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A13%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructural%20Parameters%20and%20Their%20Effect%20on%20the%20Indentation%20Hardness%20of%20Electrodeposited%20and%20Annealed%20Nickel-Iron%20Micro-Specimens&rft.jtitle=Advanced%20engineering%20materials&rft.au=Schmitt,%20Martin-T.&rft.date=2013-06&rft.volume=15&rft.issue=6&rft.spage=442&rft.epage=448&rft.pages=442-448&rft.issn=1438-1656&rft.eissn=1527-2648&rft_id=info:doi/10.1002/adem.201200253&rft_dat=%3Cproquest_cross%3E1439757387%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3903-86ed3da8bbd6febf3579d49f14eb7ba53d1047cd2ea3ea1524150b8ea0c677833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1439757387&rft_id=info:pmid/&rfr_iscdi=true |