Loading…

An analytical and experimental investigation into limit-cycle oscillations of an aeroelastic system

We perform an analytical and experimental investigation into the dynamics of an aeroelastic system consisting of a plunging and pitching rigid airfoil supported by a linear spring in the plunge degree of freedom and a nonlinear spring in the pitch degree of freedom. The experimental results show tha...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinear dynamics 2013, Vol.71 (1-2), p.159-173
Main Authors: Abdelkefi, Abdessattar, Vasconcellos, Rui, Nayfeh, Ali H., Hajj, Muhammad R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We perform an analytical and experimental investigation into the dynamics of an aeroelastic system consisting of a plunging and pitching rigid airfoil supported by a linear spring in the plunge degree of freedom and a nonlinear spring in the pitch degree of freedom. The experimental results show that the onset of flutter takes place at a speed smaller than the one predicted by a quasi-steady aerodynamic approximation. On the other hand, the unsteady representation of the aerodynamic loads accurately predicts the experimental value. The linear analysis details the difference in both formulation and provides an explanation for this difference. Nonlinear analysis is then performed to identify the nonlinear coefficients of the pitch spring. The normal form of the Hopf bifurcation is then derived to characterize the type of instability. It is demonstrated that the instability of the considered aeroelastic system is supercritical as observed in the experiments.
ISSN:0924-090X
1573-269X
DOI:10.1007/s11071-012-0648-z