Loading…

Pulse chirp effects in ultrafast laser-induced breakdown spectroscopy

When compared to many other sensitive methods for material detection, such as inductively coupled mass spectroscopy and thermal ionization mass spectroscopy, laser-induced breakdown spectroscopy (LIBS) typically exhibits a lower signal-to-noise ratio (SNR), resulting in higher detection limits. Incr...

Full description

Saved in:
Bibliographic Details
Published in:Journal of radioanalytical and nuclear chemistry 2013-04, Vol.296 (1), p.135-141
Main Authors: Hartig, K. C., McNutt, J. P., Ko, P., Jacomb-Hood, T. W., Jovanovic, I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:When compared to many other sensitive methods for material detection, such as inductively coupled mass spectroscopy and thermal ionization mass spectroscopy, laser-induced breakdown spectroscopy (LIBS) typically exhibits a lower signal-to-noise ratio (SNR), resulting in higher detection limits. Increasing the SNR of LIBS would improve the ability to characterize the sample composition with increased accuracy and speed and reduce the amount of material needed to perform analysis. We have been investigating the effect of simple ultrashort laser pulse shaping on the SNR of LIBS. Our goal is to control the dynamics of the ionization and recombination processes in the laser-produced plasma to favorably affect the SNR associated with the line emission from the plasma. Pulse shaping is performed using an acousto-optic programmable dispersive filter. An adaptive learning algorithm is being developed to automate the pulse shape optimization process for maximization of LIBS SNR in nuclear security-relevant material characterization scenarios. We report a 27 % increase of the SNR for non-gated LIBS measurements of uranium by utilizing simple pulse shaping limited exclusively to excess quadratic spectral phase of the laser pulse.
ISSN:0236-5731
1588-2780
DOI:10.1007/s10967-012-2038-x