Loading…
Porous palygorskite-polythiophene conductive composites for acrylic coatings
Modified palygorskite‐polythiophene (MPA‐PTh) composites were prepared by chemical oxidative polymerization of palygorskite (PA) nucleartor with thiophene (Th) after the surface modification with γ‐(2,3‐epoxypropoxy) propytrimethoxysilane (KH‐560). The MPA‐PTh composites were doped in iodine vapor t...
Saved in:
Published in: | Journal of applied polymer science 2013-09, Vol.129 (5), p.2707-2715 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3985-c9f3ec8376a727eca2b0fa8fa6254ae4156146b7238935fda783f7c71d8e7d363 |
---|---|
cites | cdi_FETCH-LOGICAL-c3985-c9f3ec8376a727eca2b0fa8fa6254ae4156146b7238935fda783f7c71d8e7d363 |
container_end_page | 2715 |
container_issue | 5 |
container_start_page | 2707 |
container_title | Journal of applied polymer science |
container_volume | 129 |
creator | Zuo, Shixiang Yao, Chao Liu, Wenjie Li, Xiazhang Kong, Yong Liu, Xiaoheng Mao, Huihui Li, Yingruo |
description | Modified palygorskite‐polythiophene (MPA‐PTh) composites were prepared by chemical oxidative polymerization of palygorskite (PA) nucleartor with thiophene (Th) after the surface modification with γ‐(2,3‐epoxypropoxy) propytrimethoxysilane (KH‐560). The MPA‐PTh composites were doped in iodine vapor to create the porous palygorskite‐polythiophene (PMPA‐PTh) conductive composites. Fourier transform infrared spectra (FTIR), X‐ray photoelectron spectroscopy (XPS), X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption–desorption isotherms using the Brunauer–Emmett–Teller method (BET) and electrochemical impedance spectrum (EIS) techniques were applied to characterize the modified PA and the prepared composites. According to FTIR and XPS, the KH‐560 was bound to the PA surface and the iodine ion (I3− and I5−) entered the PTh molecular chains. XRD, SEM, TEM, BET, and EIS analysis confirmed that the doping of iodine not only transform the core–shell MPA‐PTh into the PMPA‐PTh but also improve the electrical conductivity of composites. The PMPA‐PTh composites were fabricated that yield a volume resistivity of ∼2.44 × 102 Ω cm and a internal resistances of ∼100 Ω, and their BET surface area, BJH (Barrett–Joiner–Halenda) average pore size and BJH cumulative pore volume were improved in comparison with those of the MPA‐PTh composites. SEM images showed that the PMPA‐PTh composites could form consecutive space network and the PMPA‐PTh composites acrylic coating films had advisable conductivity. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 |
doi_str_mv | 10.1002/app.38995 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439775595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2989212651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3985-c9f3ec8376a727eca2b0fa8fa6254ae4156146b7238935fda783f7c71d8e7d363</originalsourceid><addsrcrecordid>eNp1kE9P4zAQxS0EEqVw4BtUQkjLIdSOY09yRPzbRWW3QiCO1uDaYEjjYKew-fbr0sJhJU4zmvm9p5lHyD6jx4zSfIxte8zLqhIbZMBoBVkh83KTDNKOZcv5NtmJ8ZlSxgSVAzKZ-uAXcdRi3T_6EF9cZ7LW13335Hz7ZBoz0r6ZLXTn3pbtvPUxIXFkfRihDn3tdBpj55rHuEu2LNbR7K3rkNxdnN-e_swmfy5_nZ5MMs2rUmS6stzokoNEyMFozB-oxdKizEWBpmBCskI-QJ4e4cLOEEpuQQOblQZmXPIh-bHybYN_XZjYqbmL2tQ1NiY9o1jBKwAhKpHQg__QZ78ITbpOMS5FzoCKKlFHK0oHH2MwVrXBzTH0ilG1zFWlXNVHrok9XDti1FjbgI128UuQQyEZ45C48Yp7d7XpvzdUJ9Ppp3O2UrjYmb9fCgwvSgIHoe5_X6rp9RlcsZtbNeH_ADfElnE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365217059</pqid></control><display><type>article</type><title>Porous palygorskite-polythiophene conductive composites for acrylic coatings</title><source>Wiley</source><creator>Zuo, Shixiang ; Yao, Chao ; Liu, Wenjie ; Li, Xiazhang ; Kong, Yong ; Liu, Xiaoheng ; Mao, Huihui ; Li, Yingruo</creator><creatorcontrib>Zuo, Shixiang ; Yao, Chao ; Liu, Wenjie ; Li, Xiazhang ; Kong, Yong ; Liu, Xiaoheng ; Mao, Huihui ; Li, Yingruo</creatorcontrib><description>Modified palygorskite‐polythiophene (MPA‐PTh) composites were prepared by chemical oxidative polymerization of palygorskite (PA) nucleartor with thiophene (Th) after the surface modification with γ‐(2,3‐epoxypropoxy) propytrimethoxysilane (KH‐560). The MPA‐PTh composites were doped in iodine vapor to create the porous palygorskite‐polythiophene (PMPA‐PTh) conductive composites. Fourier transform infrared spectra (FTIR), X‐ray photoelectron spectroscopy (XPS), X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption–desorption isotherms using the Brunauer–Emmett–Teller method (BET) and electrochemical impedance spectrum (EIS) techniques were applied to characterize the modified PA and the prepared composites. According to FTIR and XPS, the KH‐560 was bound to the PA surface and the iodine ion (I3− and I5−) entered the PTh molecular chains. XRD, SEM, TEM, BET, and EIS analysis confirmed that the doping of iodine not only transform the core–shell MPA‐PTh into the PMPA‐PTh but also improve the electrical conductivity of composites. The PMPA‐PTh composites were fabricated that yield a volume resistivity of ∼2.44 × 102 Ω cm and a internal resistances of ∼100 Ω, and their BET surface area, BJH (Barrett–Joiner–Halenda) average pore size and BJH cumulative pore volume were improved in comparison with those of the MPA‐PTh composites. SEM images showed that the PMPA‐PTh composites could form consecutive space network and the PMPA‐PTh composites acrylic coating films had advisable conductivity. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.38995</identifier><identifier>CODEN: JAPNAB</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; coatings ; Composites ; conductivity ; Electrical resistivity ; Electrochemical impedance spectroscopy ; Exact sciences and technology ; Forms of application and semi-finished materials ; Iodine ; Materials science ; palygorskite ; Polymer industry, paints, wood ; Polymer matrix composites ; Polymers ; polythiophene ; porosity ; Scanning electron microscopy ; Surface chemistry ; Technology of polymers ; Transmission electron microscopy ; X-ray photoelectron spectroscopy</subject><ispartof>Journal of applied polymer science, 2013-09, Vol.129 (5), p.2707-2715</ispartof><rights>Copyright © 2013 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3985-c9f3ec8376a727eca2b0fa8fa6254ae4156146b7238935fda783f7c71d8e7d363</citedby><cites>FETCH-LOGICAL-c3985-c9f3ec8376a727eca2b0fa8fa6254ae4156146b7238935fda783f7c71d8e7d363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27461137$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zuo, Shixiang</creatorcontrib><creatorcontrib>Yao, Chao</creatorcontrib><creatorcontrib>Liu, Wenjie</creatorcontrib><creatorcontrib>Li, Xiazhang</creatorcontrib><creatorcontrib>Kong, Yong</creatorcontrib><creatorcontrib>Liu, Xiaoheng</creatorcontrib><creatorcontrib>Mao, Huihui</creatorcontrib><creatorcontrib>Li, Yingruo</creatorcontrib><title>Porous palygorskite-polythiophene conductive composites for acrylic coatings</title><title>Journal of applied polymer science</title><addtitle>J. Appl. Polym. Sci</addtitle><description>Modified palygorskite‐polythiophene (MPA‐PTh) composites were prepared by chemical oxidative polymerization of palygorskite (PA) nucleartor with thiophene (Th) after the surface modification with γ‐(2,3‐epoxypropoxy) propytrimethoxysilane (KH‐560). The MPA‐PTh composites were doped in iodine vapor to create the porous palygorskite‐polythiophene (PMPA‐PTh) conductive composites. Fourier transform infrared spectra (FTIR), X‐ray photoelectron spectroscopy (XPS), X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption–desorption isotherms using the Brunauer–Emmett–Teller method (BET) and electrochemical impedance spectrum (EIS) techniques were applied to characterize the modified PA and the prepared composites. According to FTIR and XPS, the KH‐560 was bound to the PA surface and the iodine ion (I3− and I5−) entered the PTh molecular chains. XRD, SEM, TEM, BET, and EIS analysis confirmed that the doping of iodine not only transform the core–shell MPA‐PTh into the PMPA‐PTh but also improve the electrical conductivity of composites. The PMPA‐PTh composites were fabricated that yield a volume resistivity of ∼2.44 × 102 Ω cm and a internal resistances of ∼100 Ω, and their BET surface area, BJH (Barrett–Joiner–Halenda) average pore size and BJH cumulative pore volume were improved in comparison with those of the MPA‐PTh composites. SEM images showed that the PMPA‐PTh composites could form consecutive space network and the PMPA‐PTh composites acrylic coating films had advisable conductivity. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013</description><subject>Applied sciences</subject><subject>coatings</subject><subject>Composites</subject><subject>conductivity</subject><subject>Electrical resistivity</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>Iodine</subject><subject>Materials science</subject><subject>palygorskite</subject><subject>Polymer industry, paints, wood</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>polythiophene</subject><subject>porosity</subject><subject>Scanning electron microscopy</subject><subject>Surface chemistry</subject><subject>Technology of polymers</subject><subject>Transmission electron microscopy</subject><subject>X-ray photoelectron spectroscopy</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kE9P4zAQxS0EEqVw4BtUQkjLIdSOY09yRPzbRWW3QiCO1uDaYEjjYKew-fbr0sJhJU4zmvm9p5lHyD6jx4zSfIxte8zLqhIbZMBoBVkh83KTDNKOZcv5NtmJ8ZlSxgSVAzKZ-uAXcdRi3T_6EF9cZ7LW13335Hz7ZBoz0r6ZLXTn3pbtvPUxIXFkfRihDn3tdBpj55rHuEu2LNbR7K3rkNxdnN-e_swmfy5_nZ5MMs2rUmS6stzokoNEyMFozB-oxdKizEWBpmBCskI-QJ4e4cLOEEpuQQOblQZmXPIh-bHybYN_XZjYqbmL2tQ1NiY9o1jBKwAhKpHQg__QZ78ITbpOMS5FzoCKKlFHK0oHH2MwVrXBzTH0ilG1zFWlXNVHrok9XDti1FjbgI128UuQQyEZ45C48Yp7d7XpvzdUJ9Ppp3O2UrjYmb9fCgwvSgIHoe5_X6rp9RlcsZtbNeH_ADfElnE</recordid><startdate>20130905</startdate><enddate>20130905</enddate><creator>Zuo, Shixiang</creator><creator>Yao, Chao</creator><creator>Liu, Wenjie</creator><creator>Li, Xiazhang</creator><creator>Kong, Yong</creator><creator>Liu, Xiaoheng</creator><creator>Mao, Huihui</creator><creator>Li, Yingruo</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20130905</creationdate><title>Porous palygorskite-polythiophene conductive composites for acrylic coatings</title><author>Zuo, Shixiang ; Yao, Chao ; Liu, Wenjie ; Li, Xiazhang ; Kong, Yong ; Liu, Xiaoheng ; Mao, Huihui ; Li, Yingruo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3985-c9f3ec8376a727eca2b0fa8fa6254ae4156146b7238935fda783f7c71d8e7d363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>coatings</topic><topic>Composites</topic><topic>conductivity</topic><topic>Electrical resistivity</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>Iodine</topic><topic>Materials science</topic><topic>palygorskite</topic><topic>Polymer industry, paints, wood</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>polythiophene</topic><topic>porosity</topic><topic>Scanning electron microscopy</topic><topic>Surface chemistry</topic><topic>Technology of polymers</topic><topic>Transmission electron microscopy</topic><topic>X-ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zuo, Shixiang</creatorcontrib><creatorcontrib>Yao, Chao</creatorcontrib><creatorcontrib>Liu, Wenjie</creatorcontrib><creatorcontrib>Li, Xiazhang</creatorcontrib><creatorcontrib>Kong, Yong</creatorcontrib><creatorcontrib>Liu, Xiaoheng</creatorcontrib><creatorcontrib>Mao, Huihui</creatorcontrib><creatorcontrib>Li, Yingruo</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zuo, Shixiang</au><au>Yao, Chao</au><au>Liu, Wenjie</au><au>Li, Xiazhang</au><au>Kong, Yong</au><au>Liu, Xiaoheng</au><au>Mao, Huihui</au><au>Li, Yingruo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Porous palygorskite-polythiophene conductive composites for acrylic coatings</atitle><jtitle>Journal of applied polymer science</jtitle><addtitle>J. Appl. Polym. Sci</addtitle><date>2013-09-05</date><risdate>2013</risdate><volume>129</volume><issue>5</issue><spage>2707</spage><epage>2715</epage><pages>2707-2715</pages><issn>0021-8995</issn><eissn>1097-4628</eissn><coden>JAPNAB</coden><abstract>Modified palygorskite‐polythiophene (MPA‐PTh) composites were prepared by chemical oxidative polymerization of palygorskite (PA) nucleartor with thiophene (Th) after the surface modification with γ‐(2,3‐epoxypropoxy) propytrimethoxysilane (KH‐560). The MPA‐PTh composites were doped in iodine vapor to create the porous palygorskite‐polythiophene (PMPA‐PTh) conductive composites. Fourier transform infrared spectra (FTIR), X‐ray photoelectron spectroscopy (XPS), X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption–desorption isotherms using the Brunauer–Emmett–Teller method (BET) and electrochemical impedance spectrum (EIS) techniques were applied to characterize the modified PA and the prepared composites. According to FTIR and XPS, the KH‐560 was bound to the PA surface and the iodine ion (I3− and I5−) entered the PTh molecular chains. XRD, SEM, TEM, BET, and EIS analysis confirmed that the doping of iodine not only transform the core–shell MPA‐PTh into the PMPA‐PTh but also improve the electrical conductivity of composites. The PMPA‐PTh composites were fabricated that yield a volume resistivity of ∼2.44 × 102 Ω cm and a internal resistances of ∼100 Ω, and their BET surface area, BJH (Barrett–Joiner–Halenda) average pore size and BJH cumulative pore volume were improved in comparison with those of the MPA‐PTh composites. SEM images showed that the PMPA‐PTh composites could form consecutive space network and the PMPA‐PTh composites acrylic coating films had advisable conductivity. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/app.38995</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8995 |
ispartof | Journal of applied polymer science, 2013-09, Vol.129 (5), p.2707-2715 |
issn | 0021-8995 1097-4628 |
language | eng |
recordid | cdi_proquest_miscellaneous_1439775595 |
source | Wiley |
subjects | Applied sciences coatings Composites conductivity Electrical resistivity Electrochemical impedance spectroscopy Exact sciences and technology Forms of application and semi-finished materials Iodine Materials science palygorskite Polymer industry, paints, wood Polymer matrix composites Polymers polythiophene porosity Scanning electron microscopy Surface chemistry Technology of polymers Transmission electron microscopy X-ray photoelectron spectroscopy |
title | Porous palygorskite-polythiophene conductive composites for acrylic coatings |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A08%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Porous%20palygorskite-polythiophene%20conductive%20composites%20for%20acrylic%20coatings&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Zuo,%20Shixiang&rft.date=2013-09-05&rft.volume=129&rft.issue=5&rft.spage=2707&rft.epage=2715&rft.pages=2707-2715&rft.issn=0021-8995&rft.eissn=1097-4628&rft.coden=JAPNAB&rft_id=info:doi/10.1002/app.38995&rft_dat=%3Cproquest_cross%3E2989212651%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3985-c9f3ec8376a727eca2b0fa8fa6254ae4156146b7238935fda783f7c71d8e7d363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1365217059&rft_id=info:pmid/&rfr_iscdi=true |