Loading…

Porous palygorskite-polythiophene conductive composites for acrylic coatings

Modified palygorskite‐polythiophene (MPA‐PTh) composites were prepared by chemical oxidative polymerization of palygorskite (PA) nucleartor with thiophene (Th) after the surface modification with γ‐(2,3‐epoxypropoxy) propytrimethoxysilane (KH‐560). The MPA‐PTh composites were doped in iodine vapor t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied polymer science 2013-09, Vol.129 (5), p.2707-2715
Main Authors: Zuo, Shixiang, Yao, Chao, Liu, Wenjie, Li, Xiazhang, Kong, Yong, Liu, Xiaoheng, Mao, Huihui, Li, Yingruo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3985-c9f3ec8376a727eca2b0fa8fa6254ae4156146b7238935fda783f7c71d8e7d363
cites cdi_FETCH-LOGICAL-c3985-c9f3ec8376a727eca2b0fa8fa6254ae4156146b7238935fda783f7c71d8e7d363
container_end_page 2715
container_issue 5
container_start_page 2707
container_title Journal of applied polymer science
container_volume 129
creator Zuo, Shixiang
Yao, Chao
Liu, Wenjie
Li, Xiazhang
Kong, Yong
Liu, Xiaoheng
Mao, Huihui
Li, Yingruo
description Modified palygorskite‐polythiophene (MPA‐PTh) composites were prepared by chemical oxidative polymerization of palygorskite (PA) nucleartor with thiophene (Th) after the surface modification with γ‐(2,3‐epoxypropoxy) propytrimethoxysilane (KH‐560). The MPA‐PTh composites were doped in iodine vapor to create the porous palygorskite‐polythiophene (PMPA‐PTh) conductive composites. Fourier transform infrared spectra (FTIR), X‐ray photoelectron spectroscopy (XPS), X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption–desorption isotherms using the Brunauer–Emmett–Teller method (BET) and electrochemical impedance spectrum (EIS) techniques were applied to characterize the modified PA and the prepared composites. According to FTIR and XPS, the KH‐560 was bound to the PA surface and the iodine ion (I3− and I5−) entered the PTh molecular chains. XRD, SEM, TEM, BET, and EIS analysis confirmed that the doping of iodine not only transform the core–shell MPA‐PTh into the PMPA‐PTh but also improve the electrical conductivity of composites. The PMPA‐PTh composites were fabricated that yield a volume resistivity of ∼2.44 × 102 Ω cm and a internal resistances of ∼100 Ω, and their BET surface area, BJH (Barrett–Joiner–Halenda) average pore size and BJH cumulative pore volume were improved in comparison with those of the MPA‐PTh composites. SEM images showed that the PMPA‐PTh composites could form consecutive space network and the PMPA‐PTh composites acrylic coating films had advisable conductivity. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013
doi_str_mv 10.1002/app.38995
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439775595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2989212651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3985-c9f3ec8376a727eca2b0fa8fa6254ae4156146b7238935fda783f7c71d8e7d363</originalsourceid><addsrcrecordid>eNp1kE9P4zAQxS0EEqVw4BtUQkjLIdSOY09yRPzbRWW3QiCO1uDaYEjjYKew-fbr0sJhJU4zmvm9p5lHyD6jx4zSfIxte8zLqhIbZMBoBVkh83KTDNKOZcv5NtmJ8ZlSxgSVAzKZ-uAXcdRi3T_6EF9cZ7LW13335Hz7ZBoz0r6ZLXTn3pbtvPUxIXFkfRihDn3tdBpj55rHuEu2LNbR7K3rkNxdnN-e_swmfy5_nZ5MMs2rUmS6stzokoNEyMFozB-oxdKizEWBpmBCskI-QJ4e4cLOEEpuQQOblQZmXPIh-bHybYN_XZjYqbmL2tQ1NiY9o1jBKwAhKpHQg__QZ78ITbpOMS5FzoCKKlFHK0oHH2MwVrXBzTH0ilG1zFWlXNVHrok9XDti1FjbgI128UuQQyEZ45C48Yp7d7XpvzdUJ9Ppp3O2UrjYmb9fCgwvSgIHoe5_X6rp9RlcsZtbNeH_ADfElnE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365217059</pqid></control><display><type>article</type><title>Porous palygorskite-polythiophene conductive composites for acrylic coatings</title><source>Wiley</source><creator>Zuo, Shixiang ; Yao, Chao ; Liu, Wenjie ; Li, Xiazhang ; Kong, Yong ; Liu, Xiaoheng ; Mao, Huihui ; Li, Yingruo</creator><creatorcontrib>Zuo, Shixiang ; Yao, Chao ; Liu, Wenjie ; Li, Xiazhang ; Kong, Yong ; Liu, Xiaoheng ; Mao, Huihui ; Li, Yingruo</creatorcontrib><description>Modified palygorskite‐polythiophene (MPA‐PTh) composites were prepared by chemical oxidative polymerization of palygorskite (PA) nucleartor with thiophene (Th) after the surface modification with γ‐(2,3‐epoxypropoxy) propytrimethoxysilane (KH‐560). The MPA‐PTh composites were doped in iodine vapor to create the porous palygorskite‐polythiophene (PMPA‐PTh) conductive composites. Fourier transform infrared spectra (FTIR), X‐ray photoelectron spectroscopy (XPS), X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption–desorption isotherms using the Brunauer–Emmett–Teller method (BET) and electrochemical impedance spectrum (EIS) techniques were applied to characterize the modified PA and the prepared composites. According to FTIR and XPS, the KH‐560 was bound to the PA surface and the iodine ion (I3− and I5−) entered the PTh molecular chains. XRD, SEM, TEM, BET, and EIS analysis confirmed that the doping of iodine not only transform the core–shell MPA‐PTh into the PMPA‐PTh but also improve the electrical conductivity of composites. The PMPA‐PTh composites were fabricated that yield a volume resistivity of ∼2.44 × 102 Ω cm and a internal resistances of ∼100 Ω, and their BET surface area, BJH (Barrett–Joiner–Halenda) average pore size and BJH cumulative pore volume were improved in comparison with those of the MPA‐PTh composites. SEM images showed that the PMPA‐PTh composites could form consecutive space network and the PMPA‐PTh composites acrylic coating films had advisable conductivity. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.38995</identifier><identifier>CODEN: JAPNAB</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; coatings ; Composites ; conductivity ; Electrical resistivity ; Electrochemical impedance spectroscopy ; Exact sciences and technology ; Forms of application and semi-finished materials ; Iodine ; Materials science ; palygorskite ; Polymer industry, paints, wood ; Polymer matrix composites ; Polymers ; polythiophene ; porosity ; Scanning electron microscopy ; Surface chemistry ; Technology of polymers ; Transmission electron microscopy ; X-ray photoelectron spectroscopy</subject><ispartof>Journal of applied polymer science, 2013-09, Vol.129 (5), p.2707-2715</ispartof><rights>Copyright © 2013 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3985-c9f3ec8376a727eca2b0fa8fa6254ae4156146b7238935fda783f7c71d8e7d363</citedby><cites>FETCH-LOGICAL-c3985-c9f3ec8376a727eca2b0fa8fa6254ae4156146b7238935fda783f7c71d8e7d363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27461137$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zuo, Shixiang</creatorcontrib><creatorcontrib>Yao, Chao</creatorcontrib><creatorcontrib>Liu, Wenjie</creatorcontrib><creatorcontrib>Li, Xiazhang</creatorcontrib><creatorcontrib>Kong, Yong</creatorcontrib><creatorcontrib>Liu, Xiaoheng</creatorcontrib><creatorcontrib>Mao, Huihui</creatorcontrib><creatorcontrib>Li, Yingruo</creatorcontrib><title>Porous palygorskite-polythiophene conductive composites for acrylic coatings</title><title>Journal of applied polymer science</title><addtitle>J. Appl. Polym. Sci</addtitle><description>Modified palygorskite‐polythiophene (MPA‐PTh) composites were prepared by chemical oxidative polymerization of palygorskite (PA) nucleartor with thiophene (Th) after the surface modification with γ‐(2,3‐epoxypropoxy) propytrimethoxysilane (KH‐560). The MPA‐PTh composites were doped in iodine vapor to create the porous palygorskite‐polythiophene (PMPA‐PTh) conductive composites. Fourier transform infrared spectra (FTIR), X‐ray photoelectron spectroscopy (XPS), X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption–desorption isotherms using the Brunauer–Emmett–Teller method (BET) and electrochemical impedance spectrum (EIS) techniques were applied to characterize the modified PA and the prepared composites. According to FTIR and XPS, the KH‐560 was bound to the PA surface and the iodine ion (I3− and I5−) entered the PTh molecular chains. XRD, SEM, TEM, BET, and EIS analysis confirmed that the doping of iodine not only transform the core–shell MPA‐PTh into the PMPA‐PTh but also improve the electrical conductivity of composites. The PMPA‐PTh composites were fabricated that yield a volume resistivity of ∼2.44 × 102 Ω cm and a internal resistances of ∼100 Ω, and their BET surface area, BJH (Barrett–Joiner–Halenda) average pore size and BJH cumulative pore volume were improved in comparison with those of the MPA‐PTh composites. SEM images showed that the PMPA‐PTh composites could form consecutive space network and the PMPA‐PTh composites acrylic coating films had advisable conductivity. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013</description><subject>Applied sciences</subject><subject>coatings</subject><subject>Composites</subject><subject>conductivity</subject><subject>Electrical resistivity</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>Iodine</subject><subject>Materials science</subject><subject>palygorskite</subject><subject>Polymer industry, paints, wood</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>polythiophene</subject><subject>porosity</subject><subject>Scanning electron microscopy</subject><subject>Surface chemistry</subject><subject>Technology of polymers</subject><subject>Transmission electron microscopy</subject><subject>X-ray photoelectron spectroscopy</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kE9P4zAQxS0EEqVw4BtUQkjLIdSOY09yRPzbRWW3QiCO1uDaYEjjYKew-fbr0sJhJU4zmvm9p5lHyD6jx4zSfIxte8zLqhIbZMBoBVkh83KTDNKOZcv5NtmJ8ZlSxgSVAzKZ-uAXcdRi3T_6EF9cZ7LW13335Hz7ZBoz0r6ZLXTn3pbtvPUxIXFkfRihDn3tdBpj55rHuEu2LNbR7K3rkNxdnN-e_swmfy5_nZ5MMs2rUmS6stzokoNEyMFozB-oxdKizEWBpmBCskI-QJ4e4cLOEEpuQQOblQZmXPIh-bHybYN_XZjYqbmL2tQ1NiY9o1jBKwAhKpHQg__QZ78ITbpOMS5FzoCKKlFHK0oHH2MwVrXBzTH0ilG1zFWlXNVHrok9XDti1FjbgI128UuQQyEZ45C48Yp7d7XpvzdUJ9Ppp3O2UrjYmb9fCgwvSgIHoe5_X6rp9RlcsZtbNeH_ADfElnE</recordid><startdate>20130905</startdate><enddate>20130905</enddate><creator>Zuo, Shixiang</creator><creator>Yao, Chao</creator><creator>Liu, Wenjie</creator><creator>Li, Xiazhang</creator><creator>Kong, Yong</creator><creator>Liu, Xiaoheng</creator><creator>Mao, Huihui</creator><creator>Li, Yingruo</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20130905</creationdate><title>Porous palygorskite-polythiophene conductive composites for acrylic coatings</title><author>Zuo, Shixiang ; Yao, Chao ; Liu, Wenjie ; Li, Xiazhang ; Kong, Yong ; Liu, Xiaoheng ; Mao, Huihui ; Li, Yingruo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3985-c9f3ec8376a727eca2b0fa8fa6254ae4156146b7238935fda783f7c71d8e7d363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>coatings</topic><topic>Composites</topic><topic>conductivity</topic><topic>Electrical resistivity</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>Iodine</topic><topic>Materials science</topic><topic>palygorskite</topic><topic>Polymer industry, paints, wood</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>polythiophene</topic><topic>porosity</topic><topic>Scanning electron microscopy</topic><topic>Surface chemistry</topic><topic>Technology of polymers</topic><topic>Transmission electron microscopy</topic><topic>X-ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zuo, Shixiang</creatorcontrib><creatorcontrib>Yao, Chao</creatorcontrib><creatorcontrib>Liu, Wenjie</creatorcontrib><creatorcontrib>Li, Xiazhang</creatorcontrib><creatorcontrib>Kong, Yong</creatorcontrib><creatorcontrib>Liu, Xiaoheng</creatorcontrib><creatorcontrib>Mao, Huihui</creatorcontrib><creatorcontrib>Li, Yingruo</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zuo, Shixiang</au><au>Yao, Chao</au><au>Liu, Wenjie</au><au>Li, Xiazhang</au><au>Kong, Yong</au><au>Liu, Xiaoheng</au><au>Mao, Huihui</au><au>Li, Yingruo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Porous palygorskite-polythiophene conductive composites for acrylic coatings</atitle><jtitle>Journal of applied polymer science</jtitle><addtitle>J. Appl. Polym. Sci</addtitle><date>2013-09-05</date><risdate>2013</risdate><volume>129</volume><issue>5</issue><spage>2707</spage><epage>2715</epage><pages>2707-2715</pages><issn>0021-8995</issn><eissn>1097-4628</eissn><coden>JAPNAB</coden><abstract>Modified palygorskite‐polythiophene (MPA‐PTh) composites were prepared by chemical oxidative polymerization of palygorskite (PA) nucleartor with thiophene (Th) after the surface modification with γ‐(2,3‐epoxypropoxy) propytrimethoxysilane (KH‐560). The MPA‐PTh composites were doped in iodine vapor to create the porous palygorskite‐polythiophene (PMPA‐PTh) conductive composites. Fourier transform infrared spectra (FTIR), X‐ray photoelectron spectroscopy (XPS), X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption–desorption isotherms using the Brunauer–Emmett–Teller method (BET) and electrochemical impedance spectrum (EIS) techniques were applied to characterize the modified PA and the prepared composites. According to FTIR and XPS, the KH‐560 was bound to the PA surface and the iodine ion (I3− and I5−) entered the PTh molecular chains. XRD, SEM, TEM, BET, and EIS analysis confirmed that the doping of iodine not only transform the core–shell MPA‐PTh into the PMPA‐PTh but also improve the electrical conductivity of composites. The PMPA‐PTh composites were fabricated that yield a volume resistivity of ∼2.44 × 102 Ω cm and a internal resistances of ∼100 Ω, and their BET surface area, BJH (Barrett–Joiner–Halenda) average pore size and BJH cumulative pore volume were improved in comparison with those of the MPA‐PTh composites. SEM images showed that the PMPA‐PTh composites could form consecutive space network and the PMPA‐PTh composites acrylic coating films had advisable conductivity. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/app.38995</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8995
ispartof Journal of applied polymer science, 2013-09, Vol.129 (5), p.2707-2715
issn 0021-8995
1097-4628
language eng
recordid cdi_proquest_miscellaneous_1439775595
source Wiley
subjects Applied sciences
coatings
Composites
conductivity
Electrical resistivity
Electrochemical impedance spectroscopy
Exact sciences and technology
Forms of application and semi-finished materials
Iodine
Materials science
palygorskite
Polymer industry, paints, wood
Polymer matrix composites
Polymers
polythiophene
porosity
Scanning electron microscopy
Surface chemistry
Technology of polymers
Transmission electron microscopy
X-ray photoelectron spectroscopy
title Porous palygorskite-polythiophene conductive composites for acrylic coatings
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A08%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Porous%20palygorskite-polythiophene%20conductive%20composites%20for%20acrylic%20coatings&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Zuo,%20Shixiang&rft.date=2013-09-05&rft.volume=129&rft.issue=5&rft.spage=2707&rft.epage=2715&rft.pages=2707-2715&rft.issn=0021-8995&rft.eissn=1097-4628&rft.coden=JAPNAB&rft_id=info:doi/10.1002/app.38995&rft_dat=%3Cproquest_cross%3E2989212651%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3985-c9f3ec8376a727eca2b0fa8fa6254ae4156146b7238935fda783f7c71d8e7d363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1365217059&rft_id=info:pmid/&rfr_iscdi=true