Loading…

An Indoor Human Activity Recognition System for Smart Home Using Local Binary Pattern Features with Hidden Markov Models

Smart home technologies are getting considerable attentions nowadays for better care of the residents, especially the elderly. One of the key technologies is the human activity recognition (HAR) system which automatically recognizes various indoor activities of a resident and reacts upon the needs o...

Full description

Saved in:
Bibliographic Details
Published in:Indoor + built environment 2013-02, Vol.22 (1), p.289-298
Main Authors: Uddin, Md Zia, Kim, Deok-Hwan, Kim, Jeong Tai, Kim, Tae-Seong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Smart home technologies are getting considerable attentions nowadays for better care of the residents, especially the elderly. One of the key technologies is the human activity recognition (HAR) system which automatically recognizes various indoor activities of a resident and reacts upon the needs of the resident, known as a proactive system. In this work, we propose a novel HAR system that utilizes depth imaging. Our HAR system utilizes local binary patterns (LBP) as local activity features from depth silhouettes and recognizes human activities via Hidden Markov Model (HMM). In our methodology, first LBP features were extracted from depth human body silhouettes from each frame of a video containing human activity. Then, principal component analysis (PCA) and linear discriminant analysis (LDA) were performed over the LBP features to obtain condensed features. Applying these features, each activity HMM was trained. Finally, HAR was performed with the trained HMMs. Our approach shows superior recognition performance over the traditional silhouette feature-based approaches. The system should be practical to be used for smart homes.
ISSN:1420-326X
1423-0070
DOI:10.1177/1420326X12469734