Loading…

The inclusion of fetal bovine serum in gelatin/PCL electrospun scaffolds reduces short-term osmotic stress in HEK 293 cells caused by scaffold components

Components of gelatin/polycaprolactone (PCL) electrospun scaffolds are released to surrounding media and cause osmotic changes that adversely affect cell viability and proliferation. In this study, the physiological properties of gelatin/PCL scaffolds were investigated by qRT‐PCR and by performing c...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied polymer science 2013-09, Vol.129 (6), p.3273-3281
Main Authors: Kim, Young Hun, Kim, Do-Hyung, Hwang, Junmo, Kim, Hyeng-Soo, Lim, Ga Young, Ryoo, Zae Young, Choi, Sang-Un, Lee, Sanggyu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Components of gelatin/polycaprolactone (PCL) electrospun scaffolds are released to surrounding media and cause osmotic changes that adversely affect cell viability and proliferation. In this study, the physiological properties of gelatin/PCL scaffolds were investigated by qRT‐PCR and by performing cellular studies on HEK 293 cells. Components released from gelatin/PCL scaffolds were found to induce osmotic stress response in these cells. However, osmotic stress was inhibited by adding fetal bovine serum (FBS) to scaffolds. In addition, focal adhesion related genes were found to be up‐regulated in HEK 293 cells on gelatin/PCL/20% FBS scaffolds, and this induced the down‐regulations of cell‐death related genes. Furthermore, the inclusion of 20% FBS improved the viabilities of HEK 293 cells on gelatin/PCL scaffolds. This study indicates that adding FBS to gelatin/PCL scaffolds improves scaffold bio‐affinity. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013
ISSN:0021-8995
1097-4628
DOI:10.1002/app.39052