Loading…

Clustering of non-metric proximity data based on bi-links with -indiscernibility

Issue Title: Special issue on Data Mining In this paper, we propose a hierarchical grouping method for non-metric proximity data based on bi-links and -indiscernibility. It hierarchically forms directional links among objects according their directional proximities. A new cluster can be formed when...

Full description

Saved in:
Bibliographic Details
Published in:Journal of intelligent information systems 2013-08, Vol.41 (1), p.61-71
Main Authors: Hirano, Shoji, Tsumoto, Shusaku
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 71
container_issue 1
container_start_page 61
container_title Journal of intelligent information systems
container_volume 41
creator Hirano, Shoji
Tsumoto, Shusaku
description Issue Title: Special issue on Data Mining In this paper, we propose a hierarchical grouping method for non-metric proximity data based on bi-links and -indiscernibility. It hierarchically forms directional links among objects according their directional proximities. A new cluster can be formed when objects in two clusters are connected with bi-directional links (bi-links). The concept of -indiscernibility is incorporated into the process of establishing bi-links. This scheme enables users to control the level of asymmetry that can be ignored in merging a pair of objects. Experimental results on the soft drink brand switching data showed that this approach is capable of producing better clusters compared to the straightforward use of bi-links.[PUBLICATION ABSTRACT]
doi_str_mv 10.1007/s10844-012-0218-3
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439784583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1439784583</sourcerecordid><originalsourceid>FETCH-LOGICAL-p613-736160e0abae7a38cedbaba81453dce57bcb347af52a803cdf25dce3a6f6eeeb3</originalsourceid><addsrcrecordid>eNpdjktLxDAUhYMoOI7-AHcBN26iN73No0sZfMGALmY_JO2tZmzTsWlR_70RXbk6h8PH4WPsXMKVBDDXSYItSwGyEFBIK_CALaQyKIw26pAtoCqUqCoojtlJSjsAqKyGBXtedXOaaAzxhQ8tj0MUPU1jqPl-HD5DH6Yv3rjJce8SNXyI3AfRhfiW-EeYXrkIsQmppjEGH7pMn7Kj1nWJzv5yyTZ3t5vVg1g_3T-ubtZir2W2Qi01EDjvyDi0NTU-dytLhU1NyvjaY2lcqwpnAeumLVTe0elWE5HHJbv8vc2a7zOladv_aHSdizTMaStLrIwtlcWMXvxDd8M8xiyXKWlRSaMQvwFn02DB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1418351753</pqid></control><display><type>article</type><title>Clustering of non-metric proximity data based on bi-links with -indiscernibility</title><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Hirano, Shoji ; Tsumoto, Shusaku</creator><creatorcontrib>Hirano, Shoji ; Tsumoto, Shusaku</creatorcontrib><description>Issue Title: Special issue on Data Mining In this paper, we propose a hierarchical grouping method for non-metric proximity data based on bi-links and -indiscernibility. It hierarchically forms directional links among objects according their directional proximities. A new cluster can be formed when objects in two clusters are connected with bi-directional links (bi-links). The concept of -indiscernibility is incorporated into the process of establishing bi-links. This scheme enables users to control the level of asymmetry that can be ignored in merging a pair of objects. Experimental results on the soft drink brand switching data showed that this approach is capable of producing better clusters compared to the straightforward use of bi-links.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0925-9902</identifier><identifier>EISSN: 1573-7675</identifier><identifier>DOI: 10.1007/s10844-012-0218-3</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Analysis ; Asymmetry ; Clusters ; Information systems ; Intelligent systems ; Links ; Merging ; Proximity ; Soft drinks ; Studies ; Switching ; Symmetry</subject><ispartof>Journal of intelligent information systems, 2013-08, Vol.41 (1), p.61-71</ispartof><rights>Springer Science+Business Media New York 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1418351753/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1418351753?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,74767</link.rule.ids></links><search><creatorcontrib>Hirano, Shoji</creatorcontrib><creatorcontrib>Tsumoto, Shusaku</creatorcontrib><title>Clustering of non-metric proximity data based on bi-links with -indiscernibility</title><title>Journal of intelligent information systems</title><description>Issue Title: Special issue on Data Mining In this paper, we propose a hierarchical grouping method for non-metric proximity data based on bi-links and -indiscernibility. It hierarchically forms directional links among objects according their directional proximities. A new cluster can be formed when objects in two clusters are connected with bi-directional links (bi-links). The concept of -indiscernibility is incorporated into the process of establishing bi-links. This scheme enables users to control the level of asymmetry that can be ignored in merging a pair of objects. Experimental results on the soft drink brand switching data showed that this approach is capable of producing better clusters compared to the straightforward use of bi-links.[PUBLICATION ABSTRACT]</description><subject>Analysis</subject><subject>Asymmetry</subject><subject>Clusters</subject><subject>Information systems</subject><subject>Intelligent systems</subject><subject>Links</subject><subject>Merging</subject><subject>Proximity</subject><subject>Soft drinks</subject><subject>Studies</subject><subject>Switching</subject><subject>Symmetry</subject><issn>0925-9902</issn><issn>1573-7675</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNpdjktLxDAUhYMoOI7-AHcBN26iN73No0sZfMGALmY_JO2tZmzTsWlR_70RXbk6h8PH4WPsXMKVBDDXSYItSwGyEFBIK_CALaQyKIw26pAtoCqUqCoojtlJSjsAqKyGBXtedXOaaAzxhQ8tj0MUPU1jqPl-HD5DH6Yv3rjJce8SNXyI3AfRhfiW-EeYXrkIsQmppjEGH7pMn7Kj1nWJzv5yyTZ3t5vVg1g_3T-ubtZir2W2Qi01EDjvyDi0NTU-dytLhU1NyvjaY2lcqwpnAeumLVTe0elWE5HHJbv8vc2a7zOladv_aHSdizTMaStLrIwtlcWMXvxDd8M8xiyXKWlRSaMQvwFn02DB</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Hirano, Shoji</creator><creator>Tsumoto, Shusaku</creator><general>Springer Nature B.V</general><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20130801</creationdate><title>Clustering of non-metric proximity data based on bi-links with -indiscernibility</title><author>Hirano, Shoji ; Tsumoto, Shusaku</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p613-736160e0abae7a38cedbaba81453dce57bcb347af52a803cdf25dce3a6f6eeeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analysis</topic><topic>Asymmetry</topic><topic>Clusters</topic><topic>Information systems</topic><topic>Intelligent systems</topic><topic>Links</topic><topic>Merging</topic><topic>Proximity</topic><topic>Soft drinks</topic><topic>Studies</topic><topic>Switching</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hirano, Shoji</creatorcontrib><creatorcontrib>Tsumoto, Shusaku</creatorcontrib><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of intelligent information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hirano, Shoji</au><au>Tsumoto, Shusaku</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clustering of non-metric proximity data based on bi-links with -indiscernibility</atitle><jtitle>Journal of intelligent information systems</jtitle><date>2013-08-01</date><risdate>2013</risdate><volume>41</volume><issue>1</issue><spage>61</spage><epage>71</epage><pages>61-71</pages><issn>0925-9902</issn><eissn>1573-7675</eissn><abstract>Issue Title: Special issue on Data Mining In this paper, we propose a hierarchical grouping method for non-metric proximity data based on bi-links and -indiscernibility. It hierarchically forms directional links among objects according their directional proximities. A new cluster can be formed when objects in two clusters are connected with bi-directional links (bi-links). The concept of -indiscernibility is incorporated into the process of establishing bi-links. This scheme enables users to control the level of asymmetry that can be ignored in merging a pair of objects. Experimental results on the soft drink brand switching data showed that this approach is capable of producing better clusters compared to the straightforward use of bi-links.[PUBLICATION ABSTRACT]</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1007/s10844-012-0218-3</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-9902
ispartof Journal of intelligent information systems, 2013-08, Vol.41 (1), p.61-71
issn 0925-9902
1573-7675
language eng
recordid cdi_proquest_miscellaneous_1439784583
source ABI/INFORM Global; Springer Link
subjects Analysis
Asymmetry
Clusters
Information systems
Intelligent systems
Links
Merging
Proximity
Soft drinks
Studies
Switching
Symmetry
title Clustering of non-metric proximity data based on bi-links with -indiscernibility
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A27%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clustering%20of%20non-metric%20proximity%20data%20based%20on%20bi-links%20with%20-indiscernibility&rft.jtitle=Journal%20of%20intelligent%20information%20systems&rft.au=Hirano,%20Shoji&rft.date=2013-08-01&rft.volume=41&rft.issue=1&rft.spage=61&rft.epage=71&rft.pages=61-71&rft.issn=0925-9902&rft.eissn=1573-7675&rft_id=info:doi/10.1007/s10844-012-0218-3&rft_dat=%3Cproquest%3E1439784583%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p613-736160e0abae7a38cedbaba81453dce57bcb347af52a803cdf25dce3a6f6eeeb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1418351753&rft_id=info:pmid/&rfr_iscdi=true