Loading…

Evolutionary engineering of Saccharomyces cerevisiae for enhanced tolerance to hydrolysates of lignocellulosic biomass

ABSTRACT Lignocellulosic biomass has become an important feedstock to mitigate current ethical and economical concerns related to the bio‐based production of fuels and chemicals. During the pre‐treatment and hydrolysis of the lignocellulosic biomass, a complex mixture of sugars and inhibitors are fo...

Full description

Saved in:
Bibliographic Details
Published in:Biotechnology and bioengineering 2013-10, Vol.110 (10), p.2616-2623
Main Authors: Almario, María P., Reyes, Luis H., Kao, Katy C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACT Lignocellulosic biomass has become an important feedstock to mitigate current ethical and economical concerns related to the bio‐based production of fuels and chemicals. During the pre‐treatment and hydrolysis of the lignocellulosic biomass, a complex mixture of sugars and inhibitors are formed. The inhibitors interfere with microbial growth and product yields. This study uses an adaptive laboratory evolution method called visualizing evolution in real‐time (VERT) to uncover the molecular mechanisms associated with tolerance to hydrolysates of lignocellulosic biomass in Saccharomyces cerevisiae. VERT enables a more rational scheme for isolating adaptive mutants for characterization and molecular analyses. Subsequent growth kinetic analyses of the mutants in individual and combinations of common inhibitors present in hydrolysates (acetic acid, furfural, and hydroxymethylfurfural) showed differential levels of resistance to different inhibitors, with enhanced growth rates up to 57%, 12%, 22%, and 24% in hydrolysates, acetic acid, HMF and furfural, respectively. Interestingly, some of the adaptive mutants exhibited reduced fitness in the presence of individual inhibitors, but showed enhanced fitness in the presence of combinations of inhibitors compared to the parental strains. Transcriptomic analysis revealed different mechanisms for resistance to hydrolysates and a potential cross adaptation between oxidative stress and hydrolysates tolerance in several of the mutants. Biotechnol. Bioeng. 2013;110: 2616–2623. © 2013 Wiley Periodicals, Inc. The evolutionary dynamics of Saccharomyces cerevisiae during in vitro evolution in hydrolysates of lignocellulosic biomass are described. The adaptive evolution method visualizing evolution in real time (VERT) was used for the directed evolution of S. cerevisiae for enhanced tolerance to hydrolysates. VERT was used to facilitate the isolation of adaptive mutants from evolving population and ramp‐up of selective pressure.
ISSN:0006-3592
1097-0290
DOI:10.1002/bit.24938