Loading…
Brief report: A human induced pluripotent stem cell model of cernunnos deficiency reveals an important role for XLF in the survival of the primitive hematopoietic progenitors
ABSTRACT Cernunnos (also known as XLF) deficiency syndrome is a rare recessive autosomal disorder caused by mutations in the XLF gene, a key factor involved in the end joining step of DNA during nonhomologous end joining (NHEJ) process. Human patients with XLF mutations display microcephaly, develop...
Saved in:
Published in: | Stem cells (Dayton, Ohio) Ohio), 2013-09, Vol.31 (9), p.2015-2023 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4216-48bdc6cfe47a9e4331057b0cffe793ce4df17ad3dbf2ce96cd9eb943c45dc3f03 |
---|---|
cites | cdi_FETCH-LOGICAL-c4216-48bdc6cfe47a9e4331057b0cffe793ce4df17ad3dbf2ce96cd9eb943c45dc3f03 |
container_end_page | 2023 |
container_issue | 9 |
container_start_page | 2015 |
container_title | Stem cells (Dayton, Ohio) |
container_volume | 31 |
creator | Tilgner, Katarzyna Neganova, Irina Singhapol, Chatchawan Saretzki, Gabriele Al‐Aama, Jumana Yousuf Evans, Jerome Gorbunova, Vera Gennery, Andrew Przyborski, Stefan Stojkovic, Miodrag Armstrong, Lyle Jeggo, Penny Lako, Majlinda |
description | ABSTRACT
Cernunnos (also known as XLF) deficiency syndrome is a rare recessive autosomal disorder caused by mutations in the XLF gene, a key factor involved in the end joining step of DNA during nonhomologous end joining (NHEJ) process. Human patients with XLF mutations display microcephaly, developmental and growth delays, and severe immunodeficiency. While the clinical phenotype of DNA damage disorders, including XLF Syndrome, has been described extensively, the underlying mechanisms of disease onset, are as yet, undefined. We have been able to generate an induced pluripotent stem cell (iPSC) model of XLF deficiency, which accurately replicates the double‐strand break repair deficiency observed in XLF patients. XLF patient‐specific iPSCs (XLF‐iPSC) show typical expression of pluripotency markers, but have altered in vitro differentiation capacity and an inability to generate teratomas comprised of all three germ layers in vivo. Our results demonstrate that XLF‐iPSCs possess a weak NHEJ‐mediated DNA repair capacity that is incapable of coping with the DNA lesions introduced by physiological stress, normal metabolism, and ionizing radiation. XLF‐iPSC lines are capable of hematopoietic differentiation; however, the more primitive subsets of hematopoietic progenitors display increased apoptosis in culture and an inability to repair DNA damage. Together, our findings highlight the importance of NHEJ‐mediated‐DNA repair in the maintenance of a pristine pool of hematopoietic progenitors during human embryonic development. Stem Cells 2013;31:2015‐2023 |
doi_str_mv | 10.1002/stem.1456 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1443378676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1443378676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4216-48bdc6cfe47a9e4331057b0cffe793ce4df17ad3dbf2ce96cd9eb943c45dc3f03</originalsourceid><addsrcrecordid>eNp1kUtvFSEUgCdGYx-68A8YEje6mBYG5oG7tmnV5BoX1sTdhIGDl2YGRh7X3D_lbyz0VhcmhgUc8vGdczhV9YrgM4Jxcx4iLGeEtd2T6pi0jNeMk-FpPuOuq1vM-VF1EsIdxpkZhufVUUMHkhc9rn5fegMaeVidj-_RBdqmRVhkrEoSFFrn5M3qItiIShYkYZ7R4hTMyOkceZusdQEp0EYasHKfXTsQc0BFsxStyI-9mwFp59H3zU22o7gFFJLfmZ14MJV49WYx0ewAbWER0a3OQDQy37sfYE10PryonunshpeP-2n17eb69upjvfny4dPVxaaWrCFdzYZJyU5qYL3gwCgluO0nLLWGnlMJTGnSC0XVpBsJvJOKw8QZlaxVkmpMT6u3B2_O_TNBiONiQuldWHApjIRlaT90fZfRN_-gdy55m6vLFOXN0DJSqHcHSnoXggc9lm6F348Ej2WIY_nesQwxs68fjWlaQP0l_0wtA-cH4JeZYf9_0_j19vrzg_IeTlCrxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1439285416</pqid></control><display><type>article</type><title>Brief report: A human induced pluripotent stem cell model of cernunnos deficiency reveals an important role for XLF in the survival of the primitive hematopoietic progenitors</title><source>Oxford Journals Online</source><creator>Tilgner, Katarzyna ; Neganova, Irina ; Singhapol, Chatchawan ; Saretzki, Gabriele ; Al‐Aama, Jumana Yousuf ; Evans, Jerome ; Gorbunova, Vera ; Gennery, Andrew ; Przyborski, Stefan ; Stojkovic, Miodrag ; Armstrong, Lyle ; Jeggo, Penny ; Lako, Majlinda</creator><creatorcontrib>Tilgner, Katarzyna ; Neganova, Irina ; Singhapol, Chatchawan ; Saretzki, Gabriele ; Al‐Aama, Jumana Yousuf ; Evans, Jerome ; Gorbunova, Vera ; Gennery, Andrew ; Przyborski, Stefan ; Stojkovic, Miodrag ; Armstrong, Lyle ; Jeggo, Penny ; Lako, Majlinda</creatorcontrib><description>ABSTRACT
Cernunnos (also known as XLF) deficiency syndrome is a rare recessive autosomal disorder caused by mutations in the XLF gene, a key factor involved in the end joining step of DNA during nonhomologous end joining (NHEJ) process. Human patients with XLF mutations display microcephaly, developmental and growth delays, and severe immunodeficiency. While the clinical phenotype of DNA damage disorders, including XLF Syndrome, has been described extensively, the underlying mechanisms of disease onset, are as yet, undefined. We have been able to generate an induced pluripotent stem cell (iPSC) model of XLF deficiency, which accurately replicates the double‐strand break repair deficiency observed in XLF patients. XLF patient‐specific iPSCs (XLF‐iPSC) show typical expression of pluripotency markers, but have altered in vitro differentiation capacity and an inability to generate teratomas comprised of all three germ layers in vivo. Our results demonstrate that XLF‐iPSCs possess a weak NHEJ‐mediated DNA repair capacity that is incapable of coping with the DNA lesions introduced by physiological stress, normal metabolism, and ionizing radiation. XLF‐iPSC lines are capable of hematopoietic differentiation; however, the more primitive subsets of hematopoietic progenitors display increased apoptosis in culture and an inability to repair DNA damage. Together, our findings highlight the importance of NHEJ‐mediated‐DNA repair in the maintenance of a pristine pool of hematopoietic progenitors during human embryonic development. Stem Cells 2013;31:2015‐2023</description><identifier>ISSN: 1066-5099</identifier><identifier>EISSN: 1549-4918</identifier><identifier>DOI: 10.1002/stem.1456</identifier><identifier>PMID: 23818183</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Base Sequence ; Cell Differentiation ; Cell Line ; Cell Survival ; Cernunnos syndrome ; DNA Breaks, Double-Stranded ; DNA damage ; DNA End-Joining Repair ; DNA repair ; DNA Repair Enzymes - deficiency ; DNA Repair Enzymes - metabolism ; DNA-Binding Proteins - deficiency ; DNA-Binding Proteins - metabolism ; Double‐strand break ; Hematopoietic Stem Cells - cytology ; Hematopoietic Stem Cells - metabolism ; Human pluripotent stem cells ; Humans ; Induced pluripotent stem cells ; Induced Pluripotent Stem Cells - cytology ; Induced Pluripotent Stem Cells - metabolism ; Models, Biological ; Molecular Sequence Data ; Mutation ; Nonhomologous end joining ; Stem cells</subject><ispartof>Stem cells (Dayton, Ohio), 2013-09, Vol.31 (9), p.2015-2023</ispartof><rights>AlphaMed Press</rights><rights>AlphaMed Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4216-48bdc6cfe47a9e4331057b0cffe793ce4df17ad3dbf2ce96cd9eb943c45dc3f03</citedby><cites>FETCH-LOGICAL-c4216-48bdc6cfe47a9e4331057b0cffe793ce4df17ad3dbf2ce96cd9eb943c45dc3f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23818183$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tilgner, Katarzyna</creatorcontrib><creatorcontrib>Neganova, Irina</creatorcontrib><creatorcontrib>Singhapol, Chatchawan</creatorcontrib><creatorcontrib>Saretzki, Gabriele</creatorcontrib><creatorcontrib>Al‐Aama, Jumana Yousuf</creatorcontrib><creatorcontrib>Evans, Jerome</creatorcontrib><creatorcontrib>Gorbunova, Vera</creatorcontrib><creatorcontrib>Gennery, Andrew</creatorcontrib><creatorcontrib>Przyborski, Stefan</creatorcontrib><creatorcontrib>Stojkovic, Miodrag</creatorcontrib><creatorcontrib>Armstrong, Lyle</creatorcontrib><creatorcontrib>Jeggo, Penny</creatorcontrib><creatorcontrib>Lako, Majlinda</creatorcontrib><title>Brief report: A human induced pluripotent stem cell model of cernunnos deficiency reveals an important role for XLF in the survival of the primitive hematopoietic progenitors</title><title>Stem cells (Dayton, Ohio)</title><addtitle>Stem Cells</addtitle><description>ABSTRACT
Cernunnos (also known as XLF) deficiency syndrome is a rare recessive autosomal disorder caused by mutations in the XLF gene, a key factor involved in the end joining step of DNA during nonhomologous end joining (NHEJ) process. Human patients with XLF mutations display microcephaly, developmental and growth delays, and severe immunodeficiency. While the clinical phenotype of DNA damage disorders, including XLF Syndrome, has been described extensively, the underlying mechanisms of disease onset, are as yet, undefined. We have been able to generate an induced pluripotent stem cell (iPSC) model of XLF deficiency, which accurately replicates the double‐strand break repair deficiency observed in XLF patients. XLF patient‐specific iPSCs (XLF‐iPSC) show typical expression of pluripotency markers, but have altered in vitro differentiation capacity and an inability to generate teratomas comprised of all three germ layers in vivo. Our results demonstrate that XLF‐iPSCs possess a weak NHEJ‐mediated DNA repair capacity that is incapable of coping with the DNA lesions introduced by physiological stress, normal metabolism, and ionizing radiation. XLF‐iPSC lines are capable of hematopoietic differentiation; however, the more primitive subsets of hematopoietic progenitors display increased apoptosis in culture and an inability to repair DNA damage. Together, our findings highlight the importance of NHEJ‐mediated‐DNA repair in the maintenance of a pristine pool of hematopoietic progenitors during human embryonic development. Stem Cells 2013;31:2015‐2023</description><subject>Base Sequence</subject><subject>Cell Differentiation</subject><subject>Cell Line</subject><subject>Cell Survival</subject><subject>Cernunnos syndrome</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA damage</subject><subject>DNA End-Joining Repair</subject><subject>DNA repair</subject><subject>DNA Repair Enzymes - deficiency</subject><subject>DNA Repair Enzymes - metabolism</subject><subject>DNA-Binding Proteins - deficiency</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Double‐strand break</subject><subject>Hematopoietic Stem Cells - cytology</subject><subject>Hematopoietic Stem Cells - metabolism</subject><subject>Human pluripotent stem cells</subject><subject>Humans</subject><subject>Induced pluripotent stem cells</subject><subject>Induced Pluripotent Stem Cells - cytology</subject><subject>Induced Pluripotent Stem Cells - metabolism</subject><subject>Models, Biological</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Nonhomologous end joining</subject><subject>Stem cells</subject><issn>1066-5099</issn><issn>1549-4918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kUtvFSEUgCdGYx-68A8YEje6mBYG5oG7tmnV5BoX1sTdhIGDl2YGRh7X3D_lbyz0VhcmhgUc8vGdczhV9YrgM4Jxcx4iLGeEtd2T6pi0jNeMk-FpPuOuq1vM-VF1EsIdxpkZhufVUUMHkhc9rn5fegMaeVidj-_RBdqmRVhkrEoSFFrn5M3qItiIShYkYZ7R4hTMyOkceZusdQEp0EYasHKfXTsQc0BFsxStyI-9mwFp59H3zU22o7gFFJLfmZ14MJV49WYx0ewAbWER0a3OQDQy37sfYE10PryonunshpeP-2n17eb69upjvfny4dPVxaaWrCFdzYZJyU5qYL3gwCgluO0nLLWGnlMJTGnSC0XVpBsJvJOKw8QZlaxVkmpMT6u3B2_O_TNBiONiQuldWHApjIRlaT90fZfRN_-gdy55m6vLFOXN0DJSqHcHSnoXggc9lm6F348Ej2WIY_nesQwxs68fjWlaQP0l_0wtA-cH4JeZYf9_0_j19vrzg_IeTlCrxQ</recordid><startdate>201309</startdate><enddate>201309</enddate><creator>Tilgner, Katarzyna</creator><creator>Neganova, Irina</creator><creator>Singhapol, Chatchawan</creator><creator>Saretzki, Gabriele</creator><creator>Al‐Aama, Jumana Yousuf</creator><creator>Evans, Jerome</creator><creator>Gorbunova, Vera</creator><creator>Gennery, Andrew</creator><creator>Przyborski, Stefan</creator><creator>Stojkovic, Miodrag</creator><creator>Armstrong, Lyle</creator><creator>Jeggo, Penny</creator><creator>Lako, Majlinda</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>201309</creationdate><title>Brief report: A human induced pluripotent stem cell model of cernunnos deficiency reveals an important role for XLF in the survival of the primitive hematopoietic progenitors</title><author>Tilgner, Katarzyna ; Neganova, Irina ; Singhapol, Chatchawan ; Saretzki, Gabriele ; Al‐Aama, Jumana Yousuf ; Evans, Jerome ; Gorbunova, Vera ; Gennery, Andrew ; Przyborski, Stefan ; Stojkovic, Miodrag ; Armstrong, Lyle ; Jeggo, Penny ; Lako, Majlinda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4216-48bdc6cfe47a9e4331057b0cffe793ce4df17ad3dbf2ce96cd9eb943c45dc3f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Base Sequence</topic><topic>Cell Differentiation</topic><topic>Cell Line</topic><topic>Cell Survival</topic><topic>Cernunnos syndrome</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA damage</topic><topic>DNA End-Joining Repair</topic><topic>DNA repair</topic><topic>DNA Repair Enzymes - deficiency</topic><topic>DNA Repair Enzymes - metabolism</topic><topic>DNA-Binding Proteins - deficiency</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Double‐strand break</topic><topic>Hematopoietic Stem Cells - cytology</topic><topic>Hematopoietic Stem Cells - metabolism</topic><topic>Human pluripotent stem cells</topic><topic>Humans</topic><topic>Induced pluripotent stem cells</topic><topic>Induced Pluripotent Stem Cells - cytology</topic><topic>Induced Pluripotent Stem Cells - metabolism</topic><topic>Models, Biological</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Nonhomologous end joining</topic><topic>Stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tilgner, Katarzyna</creatorcontrib><creatorcontrib>Neganova, Irina</creatorcontrib><creatorcontrib>Singhapol, Chatchawan</creatorcontrib><creatorcontrib>Saretzki, Gabriele</creatorcontrib><creatorcontrib>Al‐Aama, Jumana Yousuf</creatorcontrib><creatorcontrib>Evans, Jerome</creatorcontrib><creatorcontrib>Gorbunova, Vera</creatorcontrib><creatorcontrib>Gennery, Andrew</creatorcontrib><creatorcontrib>Przyborski, Stefan</creatorcontrib><creatorcontrib>Stojkovic, Miodrag</creatorcontrib><creatorcontrib>Armstrong, Lyle</creatorcontrib><creatorcontrib>Jeggo, Penny</creatorcontrib><creatorcontrib>Lako, Majlinda</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Stem cells (Dayton, Ohio)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tilgner, Katarzyna</au><au>Neganova, Irina</au><au>Singhapol, Chatchawan</au><au>Saretzki, Gabriele</au><au>Al‐Aama, Jumana Yousuf</au><au>Evans, Jerome</au><au>Gorbunova, Vera</au><au>Gennery, Andrew</au><au>Przyborski, Stefan</au><au>Stojkovic, Miodrag</au><au>Armstrong, Lyle</au><au>Jeggo, Penny</au><au>Lako, Majlinda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Brief report: A human induced pluripotent stem cell model of cernunnos deficiency reveals an important role for XLF in the survival of the primitive hematopoietic progenitors</atitle><jtitle>Stem cells (Dayton, Ohio)</jtitle><addtitle>Stem Cells</addtitle><date>2013-09</date><risdate>2013</risdate><volume>31</volume><issue>9</issue><spage>2015</spage><epage>2023</epage><pages>2015-2023</pages><issn>1066-5099</issn><eissn>1549-4918</eissn><abstract>ABSTRACT
Cernunnos (also known as XLF) deficiency syndrome is a rare recessive autosomal disorder caused by mutations in the XLF gene, a key factor involved in the end joining step of DNA during nonhomologous end joining (NHEJ) process. Human patients with XLF mutations display microcephaly, developmental and growth delays, and severe immunodeficiency. While the clinical phenotype of DNA damage disorders, including XLF Syndrome, has been described extensively, the underlying mechanisms of disease onset, are as yet, undefined. We have been able to generate an induced pluripotent stem cell (iPSC) model of XLF deficiency, which accurately replicates the double‐strand break repair deficiency observed in XLF patients. XLF patient‐specific iPSCs (XLF‐iPSC) show typical expression of pluripotency markers, but have altered in vitro differentiation capacity and an inability to generate teratomas comprised of all three germ layers in vivo. Our results demonstrate that XLF‐iPSCs possess a weak NHEJ‐mediated DNA repair capacity that is incapable of coping with the DNA lesions introduced by physiological stress, normal metabolism, and ionizing radiation. XLF‐iPSC lines are capable of hematopoietic differentiation; however, the more primitive subsets of hematopoietic progenitors display increased apoptosis in culture and an inability to repair DNA damage. Together, our findings highlight the importance of NHEJ‐mediated‐DNA repair in the maintenance of a pristine pool of hematopoietic progenitors during human embryonic development. Stem Cells 2013;31:2015‐2023</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>23818183</pmid><doi>10.1002/stem.1456</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1066-5099 |
ispartof | Stem cells (Dayton, Ohio), 2013-09, Vol.31 (9), p.2015-2023 |
issn | 1066-5099 1549-4918 |
language | eng |
recordid | cdi_proquest_miscellaneous_1443378676 |
source | Oxford Journals Online |
subjects | Base Sequence Cell Differentiation Cell Line Cell Survival Cernunnos syndrome DNA Breaks, Double-Stranded DNA damage DNA End-Joining Repair DNA repair DNA Repair Enzymes - deficiency DNA Repair Enzymes - metabolism DNA-Binding Proteins - deficiency DNA-Binding Proteins - metabolism Double‐strand break Hematopoietic Stem Cells - cytology Hematopoietic Stem Cells - metabolism Human pluripotent stem cells Humans Induced pluripotent stem cells Induced Pluripotent Stem Cells - cytology Induced Pluripotent Stem Cells - metabolism Models, Biological Molecular Sequence Data Mutation Nonhomologous end joining Stem cells |
title | Brief report: A human induced pluripotent stem cell model of cernunnos deficiency reveals an important role for XLF in the survival of the primitive hematopoietic progenitors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A28%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Brief%20report:%20A%20human%20induced%20pluripotent%20stem%20cell%20model%20of%20cernunnos%20deficiency%20reveals%20an%20important%20role%20for%20XLF%20in%20the%20survival%20of%20the%20primitive%20hematopoietic%20progenitors&rft.jtitle=Stem%20cells%20(Dayton,%20Ohio)&rft.au=Tilgner,%20Katarzyna&rft.date=2013-09&rft.volume=31&rft.issue=9&rft.spage=2015&rft.epage=2023&rft.pages=2015-2023&rft.issn=1066-5099&rft.eissn=1549-4918&rft_id=info:doi/10.1002/stem.1456&rft_dat=%3Cproquest_cross%3E1443378676%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4216-48bdc6cfe47a9e4331057b0cffe793ce4df17ad3dbf2ce96cd9eb943c45dc3f03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1439285416&rft_id=info:pmid/23818183&rfr_iscdi=true |