Loading…

Brief report: A human induced pluripotent stem cell model of cernunnos deficiency reveals an important role for XLF in the survival of the primitive hematopoietic progenitors

ABSTRACT Cernunnos (also known as XLF) deficiency syndrome is a rare recessive autosomal disorder caused by mutations in the XLF gene, a key factor involved in the end joining step of DNA during nonhomologous end joining (NHEJ) process. Human patients with XLF mutations display microcephaly, develop...

Full description

Saved in:
Bibliographic Details
Published in:Stem cells (Dayton, Ohio) Ohio), 2013-09, Vol.31 (9), p.2015-2023
Main Authors: Tilgner, Katarzyna, Neganova, Irina, Singhapol, Chatchawan, Saretzki, Gabriele, Al‐Aama, Jumana Yousuf, Evans, Jerome, Gorbunova, Vera, Gennery, Andrew, Przyborski, Stefan, Stojkovic, Miodrag, Armstrong, Lyle, Jeggo, Penny, Lako, Majlinda
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4216-48bdc6cfe47a9e4331057b0cffe793ce4df17ad3dbf2ce96cd9eb943c45dc3f03
cites cdi_FETCH-LOGICAL-c4216-48bdc6cfe47a9e4331057b0cffe793ce4df17ad3dbf2ce96cd9eb943c45dc3f03
container_end_page 2023
container_issue 9
container_start_page 2015
container_title Stem cells (Dayton, Ohio)
container_volume 31
creator Tilgner, Katarzyna
Neganova, Irina
Singhapol, Chatchawan
Saretzki, Gabriele
Al‐Aama, Jumana Yousuf
Evans, Jerome
Gorbunova, Vera
Gennery, Andrew
Przyborski, Stefan
Stojkovic, Miodrag
Armstrong, Lyle
Jeggo, Penny
Lako, Majlinda
description ABSTRACT Cernunnos (also known as XLF) deficiency syndrome is a rare recessive autosomal disorder caused by mutations in the XLF gene, a key factor involved in the end joining step of DNA during nonhomologous end joining (NHEJ) process. Human patients with XLF mutations display microcephaly, developmental and growth delays, and severe immunodeficiency. While the clinical phenotype of DNA damage disorders, including XLF Syndrome, has been described extensively, the underlying mechanisms of disease onset, are as yet, undefined. We have been able to generate an induced pluripotent stem cell (iPSC) model of XLF deficiency, which accurately replicates the double‐strand break repair deficiency observed in XLF patients. XLF patient‐specific iPSCs (XLF‐iPSC) show typical expression of pluripotency markers, but have altered in vitro differentiation capacity and an inability to generate teratomas comprised of all three germ layers in vivo. Our results demonstrate that XLF‐iPSCs possess a weak NHEJ‐mediated DNA repair capacity that is incapable of coping with the DNA lesions introduced by physiological stress, normal metabolism, and ionizing radiation. XLF‐iPSC lines are capable of hematopoietic differentiation; however, the more primitive subsets of hematopoietic progenitors display increased apoptosis in culture and an inability to repair DNA damage. Together, our findings highlight the importance of NHEJ‐mediated‐DNA repair in the maintenance of a pristine pool of hematopoietic progenitors during human embryonic development. Stem Cells 2013;31:2015‐2023
doi_str_mv 10.1002/stem.1456
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1443378676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1443378676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4216-48bdc6cfe47a9e4331057b0cffe793ce4df17ad3dbf2ce96cd9eb943c45dc3f03</originalsourceid><addsrcrecordid>eNp1kUtvFSEUgCdGYx-68A8YEje6mBYG5oG7tmnV5BoX1sTdhIGDl2YGRh7X3D_lbyz0VhcmhgUc8vGdczhV9YrgM4Jxcx4iLGeEtd2T6pi0jNeMk-FpPuOuq1vM-VF1EsIdxpkZhufVUUMHkhc9rn5fegMaeVidj-_RBdqmRVhkrEoSFFrn5M3qItiIShYkYZ7R4hTMyOkceZusdQEp0EYasHKfXTsQc0BFsxStyI-9mwFp59H3zU22o7gFFJLfmZ14MJV49WYx0ewAbWER0a3OQDQy37sfYE10PryonunshpeP-2n17eb69upjvfny4dPVxaaWrCFdzYZJyU5qYL3gwCgluO0nLLWGnlMJTGnSC0XVpBsJvJOKw8QZlaxVkmpMT6u3B2_O_TNBiONiQuldWHApjIRlaT90fZfRN_-gdy55m6vLFOXN0DJSqHcHSnoXggc9lm6F348Ej2WIY_nesQwxs68fjWlaQP0l_0wtA-cH4JeZYf9_0_j19vrzg_IeTlCrxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1439285416</pqid></control><display><type>article</type><title>Brief report: A human induced pluripotent stem cell model of cernunnos deficiency reveals an important role for XLF in the survival of the primitive hematopoietic progenitors</title><source>Oxford Journals Online</source><creator>Tilgner, Katarzyna ; Neganova, Irina ; Singhapol, Chatchawan ; Saretzki, Gabriele ; Al‐Aama, Jumana Yousuf ; Evans, Jerome ; Gorbunova, Vera ; Gennery, Andrew ; Przyborski, Stefan ; Stojkovic, Miodrag ; Armstrong, Lyle ; Jeggo, Penny ; Lako, Majlinda</creator><creatorcontrib>Tilgner, Katarzyna ; Neganova, Irina ; Singhapol, Chatchawan ; Saretzki, Gabriele ; Al‐Aama, Jumana Yousuf ; Evans, Jerome ; Gorbunova, Vera ; Gennery, Andrew ; Przyborski, Stefan ; Stojkovic, Miodrag ; Armstrong, Lyle ; Jeggo, Penny ; Lako, Majlinda</creatorcontrib><description>ABSTRACT Cernunnos (also known as XLF) deficiency syndrome is a rare recessive autosomal disorder caused by mutations in the XLF gene, a key factor involved in the end joining step of DNA during nonhomologous end joining (NHEJ) process. Human patients with XLF mutations display microcephaly, developmental and growth delays, and severe immunodeficiency. While the clinical phenotype of DNA damage disorders, including XLF Syndrome, has been described extensively, the underlying mechanisms of disease onset, are as yet, undefined. We have been able to generate an induced pluripotent stem cell (iPSC) model of XLF deficiency, which accurately replicates the double‐strand break repair deficiency observed in XLF patients. XLF patient‐specific iPSCs (XLF‐iPSC) show typical expression of pluripotency markers, but have altered in vitro differentiation capacity and an inability to generate teratomas comprised of all three germ layers in vivo. Our results demonstrate that XLF‐iPSCs possess a weak NHEJ‐mediated DNA repair capacity that is incapable of coping with the DNA lesions introduced by physiological stress, normal metabolism, and ionizing radiation. XLF‐iPSC lines are capable of hematopoietic differentiation; however, the more primitive subsets of hematopoietic progenitors display increased apoptosis in culture and an inability to repair DNA damage. Together, our findings highlight the importance of NHEJ‐mediated‐DNA repair in the maintenance of a pristine pool of hematopoietic progenitors during human embryonic development. Stem Cells 2013;31:2015‐2023</description><identifier>ISSN: 1066-5099</identifier><identifier>EISSN: 1549-4918</identifier><identifier>DOI: 10.1002/stem.1456</identifier><identifier>PMID: 23818183</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Base Sequence ; Cell Differentiation ; Cell Line ; Cell Survival ; Cernunnos syndrome ; DNA Breaks, Double-Stranded ; DNA damage ; DNA End-Joining Repair ; DNA repair ; DNA Repair Enzymes - deficiency ; DNA Repair Enzymes - metabolism ; DNA-Binding Proteins - deficiency ; DNA-Binding Proteins - metabolism ; Double‐strand break ; Hematopoietic Stem Cells - cytology ; Hematopoietic Stem Cells - metabolism ; Human pluripotent stem cells ; Humans ; Induced pluripotent stem cells ; Induced Pluripotent Stem Cells - cytology ; Induced Pluripotent Stem Cells - metabolism ; Models, Biological ; Molecular Sequence Data ; Mutation ; Nonhomologous end joining ; Stem cells</subject><ispartof>Stem cells (Dayton, Ohio), 2013-09, Vol.31 (9), p.2015-2023</ispartof><rights>AlphaMed Press</rights><rights>AlphaMed Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4216-48bdc6cfe47a9e4331057b0cffe793ce4df17ad3dbf2ce96cd9eb943c45dc3f03</citedby><cites>FETCH-LOGICAL-c4216-48bdc6cfe47a9e4331057b0cffe793ce4df17ad3dbf2ce96cd9eb943c45dc3f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23818183$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tilgner, Katarzyna</creatorcontrib><creatorcontrib>Neganova, Irina</creatorcontrib><creatorcontrib>Singhapol, Chatchawan</creatorcontrib><creatorcontrib>Saretzki, Gabriele</creatorcontrib><creatorcontrib>Al‐Aama, Jumana Yousuf</creatorcontrib><creatorcontrib>Evans, Jerome</creatorcontrib><creatorcontrib>Gorbunova, Vera</creatorcontrib><creatorcontrib>Gennery, Andrew</creatorcontrib><creatorcontrib>Przyborski, Stefan</creatorcontrib><creatorcontrib>Stojkovic, Miodrag</creatorcontrib><creatorcontrib>Armstrong, Lyle</creatorcontrib><creatorcontrib>Jeggo, Penny</creatorcontrib><creatorcontrib>Lako, Majlinda</creatorcontrib><title>Brief report: A human induced pluripotent stem cell model of cernunnos deficiency reveals an important role for XLF in the survival of the primitive hematopoietic progenitors</title><title>Stem cells (Dayton, Ohio)</title><addtitle>Stem Cells</addtitle><description>ABSTRACT Cernunnos (also known as XLF) deficiency syndrome is a rare recessive autosomal disorder caused by mutations in the XLF gene, a key factor involved in the end joining step of DNA during nonhomologous end joining (NHEJ) process. Human patients with XLF mutations display microcephaly, developmental and growth delays, and severe immunodeficiency. While the clinical phenotype of DNA damage disorders, including XLF Syndrome, has been described extensively, the underlying mechanisms of disease onset, are as yet, undefined. We have been able to generate an induced pluripotent stem cell (iPSC) model of XLF deficiency, which accurately replicates the double‐strand break repair deficiency observed in XLF patients. XLF patient‐specific iPSCs (XLF‐iPSC) show typical expression of pluripotency markers, but have altered in vitro differentiation capacity and an inability to generate teratomas comprised of all three germ layers in vivo. Our results demonstrate that XLF‐iPSCs possess a weak NHEJ‐mediated DNA repair capacity that is incapable of coping with the DNA lesions introduced by physiological stress, normal metabolism, and ionizing radiation. XLF‐iPSC lines are capable of hematopoietic differentiation; however, the more primitive subsets of hematopoietic progenitors display increased apoptosis in culture and an inability to repair DNA damage. Together, our findings highlight the importance of NHEJ‐mediated‐DNA repair in the maintenance of a pristine pool of hematopoietic progenitors during human embryonic development. Stem Cells 2013;31:2015‐2023</description><subject>Base Sequence</subject><subject>Cell Differentiation</subject><subject>Cell Line</subject><subject>Cell Survival</subject><subject>Cernunnos syndrome</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA damage</subject><subject>DNA End-Joining Repair</subject><subject>DNA repair</subject><subject>DNA Repair Enzymes - deficiency</subject><subject>DNA Repair Enzymes - metabolism</subject><subject>DNA-Binding Proteins - deficiency</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Double‐strand break</subject><subject>Hematopoietic Stem Cells - cytology</subject><subject>Hematopoietic Stem Cells - metabolism</subject><subject>Human pluripotent stem cells</subject><subject>Humans</subject><subject>Induced pluripotent stem cells</subject><subject>Induced Pluripotent Stem Cells - cytology</subject><subject>Induced Pluripotent Stem Cells - metabolism</subject><subject>Models, Biological</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Nonhomologous end joining</subject><subject>Stem cells</subject><issn>1066-5099</issn><issn>1549-4918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kUtvFSEUgCdGYx-68A8YEje6mBYG5oG7tmnV5BoX1sTdhIGDl2YGRh7X3D_lbyz0VhcmhgUc8vGdczhV9YrgM4Jxcx4iLGeEtd2T6pi0jNeMk-FpPuOuq1vM-VF1EsIdxpkZhufVUUMHkhc9rn5fegMaeVidj-_RBdqmRVhkrEoSFFrn5M3qItiIShYkYZ7R4hTMyOkceZusdQEp0EYasHKfXTsQc0BFsxStyI-9mwFp59H3zU22o7gFFJLfmZ14MJV49WYx0ewAbWER0a3OQDQy37sfYE10PryonunshpeP-2n17eb69upjvfny4dPVxaaWrCFdzYZJyU5qYL3gwCgluO0nLLWGnlMJTGnSC0XVpBsJvJOKw8QZlaxVkmpMT6u3B2_O_TNBiONiQuldWHApjIRlaT90fZfRN_-gdy55m6vLFOXN0DJSqHcHSnoXggc9lm6F348Ej2WIY_nesQwxs68fjWlaQP0l_0wtA-cH4JeZYf9_0_j19vrzg_IeTlCrxQ</recordid><startdate>201309</startdate><enddate>201309</enddate><creator>Tilgner, Katarzyna</creator><creator>Neganova, Irina</creator><creator>Singhapol, Chatchawan</creator><creator>Saretzki, Gabriele</creator><creator>Al‐Aama, Jumana Yousuf</creator><creator>Evans, Jerome</creator><creator>Gorbunova, Vera</creator><creator>Gennery, Andrew</creator><creator>Przyborski, Stefan</creator><creator>Stojkovic, Miodrag</creator><creator>Armstrong, Lyle</creator><creator>Jeggo, Penny</creator><creator>Lako, Majlinda</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>201309</creationdate><title>Brief report: A human induced pluripotent stem cell model of cernunnos deficiency reveals an important role for XLF in the survival of the primitive hematopoietic progenitors</title><author>Tilgner, Katarzyna ; Neganova, Irina ; Singhapol, Chatchawan ; Saretzki, Gabriele ; Al‐Aama, Jumana Yousuf ; Evans, Jerome ; Gorbunova, Vera ; Gennery, Andrew ; Przyborski, Stefan ; Stojkovic, Miodrag ; Armstrong, Lyle ; Jeggo, Penny ; Lako, Majlinda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4216-48bdc6cfe47a9e4331057b0cffe793ce4df17ad3dbf2ce96cd9eb943c45dc3f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Base Sequence</topic><topic>Cell Differentiation</topic><topic>Cell Line</topic><topic>Cell Survival</topic><topic>Cernunnos syndrome</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA damage</topic><topic>DNA End-Joining Repair</topic><topic>DNA repair</topic><topic>DNA Repair Enzymes - deficiency</topic><topic>DNA Repair Enzymes - metabolism</topic><topic>DNA-Binding Proteins - deficiency</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Double‐strand break</topic><topic>Hematopoietic Stem Cells - cytology</topic><topic>Hematopoietic Stem Cells - metabolism</topic><topic>Human pluripotent stem cells</topic><topic>Humans</topic><topic>Induced pluripotent stem cells</topic><topic>Induced Pluripotent Stem Cells - cytology</topic><topic>Induced Pluripotent Stem Cells - metabolism</topic><topic>Models, Biological</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Nonhomologous end joining</topic><topic>Stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tilgner, Katarzyna</creatorcontrib><creatorcontrib>Neganova, Irina</creatorcontrib><creatorcontrib>Singhapol, Chatchawan</creatorcontrib><creatorcontrib>Saretzki, Gabriele</creatorcontrib><creatorcontrib>Al‐Aama, Jumana Yousuf</creatorcontrib><creatorcontrib>Evans, Jerome</creatorcontrib><creatorcontrib>Gorbunova, Vera</creatorcontrib><creatorcontrib>Gennery, Andrew</creatorcontrib><creatorcontrib>Przyborski, Stefan</creatorcontrib><creatorcontrib>Stojkovic, Miodrag</creatorcontrib><creatorcontrib>Armstrong, Lyle</creatorcontrib><creatorcontrib>Jeggo, Penny</creatorcontrib><creatorcontrib>Lako, Majlinda</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Stem cells (Dayton, Ohio)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tilgner, Katarzyna</au><au>Neganova, Irina</au><au>Singhapol, Chatchawan</au><au>Saretzki, Gabriele</au><au>Al‐Aama, Jumana Yousuf</au><au>Evans, Jerome</au><au>Gorbunova, Vera</au><au>Gennery, Andrew</au><au>Przyborski, Stefan</au><au>Stojkovic, Miodrag</au><au>Armstrong, Lyle</au><au>Jeggo, Penny</au><au>Lako, Majlinda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Brief report: A human induced pluripotent stem cell model of cernunnos deficiency reveals an important role for XLF in the survival of the primitive hematopoietic progenitors</atitle><jtitle>Stem cells (Dayton, Ohio)</jtitle><addtitle>Stem Cells</addtitle><date>2013-09</date><risdate>2013</risdate><volume>31</volume><issue>9</issue><spage>2015</spage><epage>2023</epage><pages>2015-2023</pages><issn>1066-5099</issn><eissn>1549-4918</eissn><abstract>ABSTRACT Cernunnos (also known as XLF) deficiency syndrome is a rare recessive autosomal disorder caused by mutations in the XLF gene, a key factor involved in the end joining step of DNA during nonhomologous end joining (NHEJ) process. Human patients with XLF mutations display microcephaly, developmental and growth delays, and severe immunodeficiency. While the clinical phenotype of DNA damage disorders, including XLF Syndrome, has been described extensively, the underlying mechanisms of disease onset, are as yet, undefined. We have been able to generate an induced pluripotent stem cell (iPSC) model of XLF deficiency, which accurately replicates the double‐strand break repair deficiency observed in XLF patients. XLF patient‐specific iPSCs (XLF‐iPSC) show typical expression of pluripotency markers, but have altered in vitro differentiation capacity and an inability to generate teratomas comprised of all three germ layers in vivo. Our results demonstrate that XLF‐iPSCs possess a weak NHEJ‐mediated DNA repair capacity that is incapable of coping with the DNA lesions introduced by physiological stress, normal metabolism, and ionizing radiation. XLF‐iPSC lines are capable of hematopoietic differentiation; however, the more primitive subsets of hematopoietic progenitors display increased apoptosis in culture and an inability to repair DNA damage. Together, our findings highlight the importance of NHEJ‐mediated‐DNA repair in the maintenance of a pristine pool of hematopoietic progenitors during human embryonic development. Stem Cells 2013;31:2015‐2023</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>23818183</pmid><doi>10.1002/stem.1456</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1066-5099
ispartof Stem cells (Dayton, Ohio), 2013-09, Vol.31 (9), p.2015-2023
issn 1066-5099
1549-4918
language eng
recordid cdi_proquest_miscellaneous_1443378676
source Oxford Journals Online
subjects Base Sequence
Cell Differentiation
Cell Line
Cell Survival
Cernunnos syndrome
DNA Breaks, Double-Stranded
DNA damage
DNA End-Joining Repair
DNA repair
DNA Repair Enzymes - deficiency
DNA Repair Enzymes - metabolism
DNA-Binding Proteins - deficiency
DNA-Binding Proteins - metabolism
Double‐strand break
Hematopoietic Stem Cells - cytology
Hematopoietic Stem Cells - metabolism
Human pluripotent stem cells
Humans
Induced pluripotent stem cells
Induced Pluripotent Stem Cells - cytology
Induced Pluripotent Stem Cells - metabolism
Models, Biological
Molecular Sequence Data
Mutation
Nonhomologous end joining
Stem cells
title Brief report: A human induced pluripotent stem cell model of cernunnos deficiency reveals an important role for XLF in the survival of the primitive hematopoietic progenitors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A28%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Brief%20report:%20A%20human%20induced%20pluripotent%20stem%20cell%20model%20of%20cernunnos%20deficiency%20reveals%20an%20important%20role%20for%20XLF%20in%20the%20survival%20of%20the%20primitive%20hematopoietic%20progenitors&rft.jtitle=Stem%20cells%20(Dayton,%20Ohio)&rft.au=Tilgner,%20Katarzyna&rft.date=2013-09&rft.volume=31&rft.issue=9&rft.spage=2015&rft.epage=2023&rft.pages=2015-2023&rft.issn=1066-5099&rft.eissn=1549-4918&rft_id=info:doi/10.1002/stem.1456&rft_dat=%3Cproquest_cross%3E1443378676%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4216-48bdc6cfe47a9e4331057b0cffe793ce4df17ad3dbf2ce96cd9eb943c45dc3f03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1439285416&rft_id=info:pmid/23818183&rfr_iscdi=true