Loading…

Capturing a Sulfenic Acid with Arylboronic Acids and Benzoxaborole

Post-translational redox generation of cysteine-sulfenic acids (Cys-SOH) functions as an important reversible regulatory mechanism for many biological functions, such as signal transduction, balancing cellular redox states, catalysis, and gene transcription. Herein we show that arylboronic acids and...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2013-10, Vol.135 (39), p.14544-14547
Main Authors: Liu, C. Tony, Benkovic, Stephen J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Post-translational redox generation of cysteine-sulfenic acids (Cys-SOH) functions as an important reversible regulatory mechanism for many biological functions, such as signal transduction, balancing cellular redox states, catalysis, and gene transcription. Herein we show that arylboronic acids and cyclic benzoxaboroles can form adducts with sulfenic acids in aqueous medium and that these boron-based compounds can potentially be used to trap biologically significant sulfenic acids. As proof of principle we demonstrate that a benzoxaborole can inhibit the enzyme activity of an iron-containing nitrile hydratase, which requires a catalytic αCys114-SOH in the active site. The nature of the adduct and the effect of the boronic acid’s pK a B on the stability constant of the adduct are discussed within.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja407628a