Loading…

Trop2 regulates motility and lamellipodia formation in cultured fetal lung fibroblasts

Proliferation and migration of fibroblasts are vital for fetal lung development. However, the regulatory mechanisms are poorly understood. We have previously shown that TROP2 gene expression is closely associated with fetal lung cell proliferation in vivo and that TROP2 knockdown decreases prolifera...

Full description

Saved in:
Bibliographic Details
Published in:American journal of physiology. Lung cellular and molecular physiology 2013-10, Vol.305 (7), p.L508-L521
Main Authors: McDougall, Annie R A, Hooper, Stuart B, Zahra, Valerie A, Cole, Timothy J, Lo, Camden Y, Doran, Timothy, Wallace, Megan J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Proliferation and migration of fibroblasts are vital for fetal lung development. However, the regulatory mechanisms are poorly understood. We have previously shown that TROP2 gene expression is closely associated with fetal lung cell proliferation in vivo and that TROP2 knockdown decreases proliferation of fetal lung fibroblasts in culture. We hypothesized that the Trop2 protein also regulates the morphology and motility of fetal lung fibroblasts. Fibroblasts isolated from fetal rat lungs (gestational age embryonic day 19) adopted a myofibroblast-like morphology in culture. Trop2 protein was localized to lamellipodia. TROP2 siRNA significantly decreased: TROP2 mRNA levels by 77%, the proportion of cells containing Trop2 protein by 70%, and cell proliferation by 50%. TROP2 siRNA also decreased the degree of motility as determined by the number of gridlines that cells moved across (2.2 ± 0.2 vs. 3.2 ± 0.2; P < 0.001). TROP2 knockdown altered cell morphology, causing a notable absence of lamellipodia and abnormal localization of components of the cell migration apparatus, and it reduced phosphorylated ERK1 and ERK2 levels. In contrast, TROP2 overexpression significantly increased: TROP2 mRNA levels by 40-fold, cell proliferation by 40%, the proportion of cells that were motile by 20%, and the number of gridlines that cells moved across (2.1 ± 0.2 vs. 1.6 ± 0.1; P < 0.001). Our data suggest that Trop2 regulates cell proliferation and motility and that it does so by regulating the ERK pathway and several critical components of the cell migration apparatus.
ISSN:1040-0605
1522-1504
DOI:10.1152/ajplung.00160.2012