Loading…
Inactive xylem can explain differences in calibration factors for thermal dissipation probe sap flow measurements
Thermal dissipation probes (TDPs) were calibrated in three diffuse porous fruit trees and one ornamental species in the field by comparison with heat pulse probes (nectarine and persimmon), in a greenhouse on lysimeters (apple and persimmon) and in the laboratory by pushing water through cut branche...
Saved in:
Published in: | Tree physiology 2013-09, Vol.33 (9), p.986-1001 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Thermal dissipation probes (TDPs) were calibrated in three diffuse porous fruit trees and one ornamental species in the field by comparison with heat pulse probes (nectarine and persimmon), in a greenhouse on lysimeters (apple and persimmon) and in the laboratory by pushing water through cut branches (apple, Peltophorum and nectarine). Two operational methods were used: continuous (constant thermal dissipation, CTD) and discontinuous, or transient, heating (transient thermal dissipation, TTD). Correction for the radial distribution of sap flux density was with an analytical function derived from a linear decrease in flux density with depth, as measured with a multi-depth 'Tmax' heat pulse system. When analyzed with previous calibration factors, the measured sap flow was |
---|---|
ISSN: | 0829-318X 1758-4469 |
DOI: | 10.1093/treephys/tpt070 |