Loading…

Growth of Crystalline Hydroxyapatite Thin Films at Room Temperature by Tuning the Energy of the RF-Magnetron Sputtering Plasma

Right angle radio frequency magnetron sputtering technique (RAMS) was redesigned to favor the production of high-quality hydroxyapatite (HA) thin coatings for biomedical applications. Stoichiometric HA films with controlled crystallinity, thickness varying from 254 to 540 nm, crystallite mean size o...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2013-10, Vol.5 (19), p.9435-9445
Main Authors: López, Elvis O, Mello, Alexandre, Sendão, Henrique, Costa, Lilian T, Rossi, André L, Ospina, Rogelio O, Borghi, Fabrício F, Silva Filho, José G, Rossi, Alexandre M
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Right angle radio frequency magnetron sputtering technique (RAMS) was redesigned to favor the production of high-quality hydroxyapatite (HA) thin coatings for biomedical applications. Stoichiometric HA films with controlled crystallinity, thickness varying from 254 to 540 nm, crystallite mean size of 73 nm, and RMS roughness of 1.7 ± 0.9 nm, were obtained at room temperature by tuning the thermodynamic properties of the plasma sheath energy. The plasma energies were adjusted by using a suitable high magnetic field confinement of 143 mT (1430 G) and a substrate floating potential of 2 V at the substrate-to-magnetron distance of Z = 10 mm and by varying the sputtering geometry, substrate-to-magnetron distance from Z = 5 mm to Z = 18 mm, forwarded RF power and reactive gas pressure. Measurements that were taken with a Langmuir probe showed that the adjusted RAMS geometry generated a plasma with an adequate effective temperature of T eff ≈ 11.8 eV and electron density of 2.0 × 1015 m–3 to nucleate nanoclusters and to further crystallize the nanodomains of stoichiometric HA. The deposition mechanism in the RAMS geometry was described by the formation of building units of amorphous calcium phosphate clusters (ACP), the conversion into HA nanodomains and the crystallization of the grain domains with a preferential orientation along the HA [002] direction.
ISSN:1944-8244
1944-8252
DOI:10.1021/am4020007