Loading…

Snapshot molecular imaging using coded energy-sensitive detection

We demonstrate a technique for measuring the range-resolved coherent scatter form factors of different objects from a single snapshot. By illuminating the object with an x-ray pencil beam and placing a coded aperture in front of a linear array of energy-sensitive detector elements, we record the coh...

Full description

Saved in:
Bibliographic Details
Published in:Optics express 2013-10, Vol.21 (21), p.25480-25491
Main Authors: Greenberg, Joel A, Krishnamurthy, Kalyani, Brady, David
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We demonstrate a technique for measuring the range-resolved coherent scatter form factors of different objects from a single snapshot. By illuminating the object with an x-ray pencil beam and placing a coded aperture in front of a linear array of energy-sensitive detector elements, we record the coherently scattered x-rays. This approach yields lateral, range, and momentum transfer resolutions of 1 mm, 5 mm, and 0.2 nm⁻¹, respectively, which is sufficient for the distinguishing a variety of solids and liquids. These results indicate a path toward real-time volumetric molecular imaging for non-destructive examination in a variety of applications, including medical diagnostics, quality inspection, and security detection.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.21.025480