Loading…

Competition as a source of errors in RAPD analysis

We have used artificial 1∶1 DNA mixtures of all pairwise combinations of four doubled haploid Brassica napus lines to test the ability of RAPDs to function as reliable dominant genetic markers. In situations where a specific RAPD band is present in one homozygous line but absent in the other, the ba...

Full description

Saved in:
Bibliographic Details
Published in:Theoretical and applied genetics 1996-12, Vol.93 (8), p.1185-1192
Main Authors: Hallden, C, Hansen, M, Nilsson, N.O, Hjerdin, A, Saell, T. (Hilleshoeg AB, Landskrona (Sweden))
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We have used artificial 1∶1 DNA mixtures of all pairwise combinations of four doubled haploid Brassica napus lines to test the ability of RAPDs to function as reliable dominant genetic markers. In situations where a specific RAPD band is present in one homozygous line but absent in the other, the band is expected in the artificial heterozygote, i.e. in the 1∶1 DNA mixture. In 84 of all 613 heterozygous situations analysed, the expected band failed to amplify in the RAPD reaction. Thus, RAPD markers will lead to an erroneous genetic interpretation in 14% of all cases. In contrast, the formation of non-parental heteroduplex bands was found at a frequency of only 0.2%. Analysis of 1∶ 1 mixtures using (1) a different set of optimized reaction conditions and (2) a material with low genomic complexity (Bacillus cereus) gave identical results. Serial dilutions of one genome into another, in steps of 10%, showed that all of the polymorphic bands decreased in intensity as a linear function of their respective proportion in the mixture. In dilutions with water no differences in band intensity were detected. Thus, competition occurs in the amplification of all RAPD fragments and is a major source of genotyping errors in RAPD analysis.
ISSN:0040-5752
1432-2242
DOI:10.1007/BF00223449