Loading…

Effects of Aroclor 1254 on the Thyroid Gland, Immune Function, and Hepatic Cytochrome P450 Activity in Mallards

Adult male mallards were exposed to 0, 4, 20, 100, 250, and 500 mg/kg Aroclor 1254 by gavage twice per week for 5 weeks. Immunotoxic effects, as measured by antibody titers to sheep erythrocytes, natural killer cell activity and lymphocyte mitogenesis to phytohemagglutinin, were not detected as a co...

Full description

Saved in:
Bibliographic Details
Published in:Environmental research 1997-11, Vol.75 (2), p.119-129
Main Authors: Fowles, Jefferson R, Fairbrother, Anne, Trust, Kimberly A, Kerkvliet, Nancy I
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Adult male mallards were exposed to 0, 4, 20, 100, 250, and 500 mg/kg Aroclor 1254 by gavage twice per week for 5 weeks. Immunotoxic effects, as measured by antibody titers to sheep erythrocytes, natural killer cell activity and lymphocyte mitogenesis to phytohemagglutinin, were not detected as a consequence of polychlorinated biphenyl (PCB) exposure. Hepatic cytochrome P450 activities were measured as microsomal dealkylations of ethoxy-resorufin (EROD) and pentoxyresorufin (PROD). Significant elevations in EROD and PROD were noted at 20 mg/kg and peaked in birds treated with 100 mg/kg. Total P450 was induced beginning at 100 mg/kg and peaked at 250 mg/kg. Relative liver weights were dose-dependently increased following treatment with 100 mg/kg or more. Thyroid weights were significantly increased in PCB-treated birds treated with 100 mg/kg or greater, but no significant histological abnormalities were observed, except at the highest dose. Plasma total triiodothyronine (T3) was decreased in a dose-dependent manner, with a significant lowest-observed-adverse-effect level (LOAEL) of 20 mg/kg. T3 was decreased following 7 days treatment with 100 mg/kg. The no-observed-adverse-effect level (NOAEL) was 4 mg/kg for decreased T3. Plasma glucose levels were decreased on days 28 and 35 in mallards treated with 500 mg/kg, while other clinical plasma biochemistry parameters were unaltered by PCB treatment. Plasma corticosterone levels were unchanged by PCB treatment. These results indicate that thyroid hormone levels and P450 activity in mallards are sensitive to subchronic PCB exposure in the absence of gross toxic effects and immunotoxicity.
ISSN:0013-9351
1096-0953
DOI:10.1006/enrs.1997.3776