Loading…
Growth Modeling of Listeria monocytogenes in Pasteurized Liquid Egg
The growth kinetics of Listeria monocytogenes and natural flora in commercially produced pasteurized liquid egg was examined at 4.1 to 19.4°C, and a growth simulation model that can estimate the range of the number of L. monocytogenes bacteria was developed. The experimental kinetic data were fitted...
Saved in:
Published in: | Journal of food protection 2013-09, Vol.76 (9), p.1549-1556 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The growth kinetics of Listeria monocytogenes and natural flora in commercially produced pasteurized liquid egg was examined at 4.1 to 19.4°C, and a growth simulation model that can estimate the range of the number of L. monocytogenes bacteria was developed. The experimental kinetic data were fitted to the Baranyi model, and growth parameters, such as maximum specific growth rate (μ(max)), maximum population density (N(max)), and lag time (λ), were estimated. As a result of estimating these parameters, we found that L. monocytogenes can grow without spoilage below 12.2°C, and we then focused on storage temperatures below 12.2°C in developing our secondary models. The temperature dependency of the μ(max) was described by Ratkowsky's square root model. The N(max) of L. monocytogenes was modeled as a function of temperature, because the N(max) of L. monocytogenes decreased as storage temperature increased. A tertiary model of L. monocytogenes was developed using the Baranyi model and μ(max) and N(max) secondary models. The ranges of the numbers of L. monocytogenes bacteria were simulated using Monte Carlo simulations with an assumption that these parameters have variations that follow a normal distribution. Predictive simulations under both constant and fluctuating temperature conditions demonstrated a high accuracy, represented by root mean square errors of 0.44 and 0.34, respectively. The predicted ranges also seemed to show a reasonably good estimation, with 55.8 and 51.5% of observed values falling into the prediction range of the 25th to 75th percentile, respectively. These results suggest that the model developed here can be used to estimate the kinetics and range of L. monocytogenes growth in pasteurized liquid egg under refrigerated temperature. |
---|---|
ISSN: | 0362-028X 1944-9097 |
DOI: | 10.4315/0362-028X.JFP-12-524 |