Loading…
The crystal structure of methenyltetrahydromethanopterin cyclohydrolase from Methanobrevibacter ruminantium
ABSTRACT Methenyltetrahydromethanopterin cyclohydrolase (Mch) is involved in the methanogenesis pathway of archaea as a C1 unit carrier where N5‐formyl‐tetrahydromethanopterin is converted to methenyl‐tetrahydromethanopterin. Mch from Methanobrevibacter ruminantium was cloned, purified, crystallized...
Saved in:
Published in: | Proteins, structure, function, and bioinformatics structure, function, and bioinformatics, 2013-11, Vol.81 (11), p.2064-2070 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | ABSTRACT
Methenyltetrahydromethanopterin cyclohydrolase (Mch) is involved in the methanogenesis pathway of archaea as a C1 unit carrier where N5‐formyl‐tetrahydromethanopterin is converted to methenyl‐tetrahydromethanopterin. Mch from Methanobrevibacter ruminantium was cloned, purified, crystallized and its crystal structure solved at 1.37 Å resolution. A biologically active trimer, the enzyme is composed of two domains including an N‐terminal domain of six α‐helices encompassing a series of four β‐sheets and a predominantly anti‐parallel β–sheet at the C‐terminus flanked on one side by α‐helices. Sequence and structural alignments have helped identify residues involved in substrate binding and trimer formation. Proteins 2013; 81:2064–2070. © 2013 Wiley Periodicals, Inc. |
---|---|
ISSN: | 0887-3585 1097-0134 |
DOI: | 10.1002/prot.24372 |