Loading…

Microstructure and thermoelectric properties of tungsten trioxide ceramics doped with a low amount of terbium dioxide

The effect of the nonstoichiometric compound terbium dioxide (Tb 4 O 7 ) on the thermoelectric properties of tungsten trioxide (WO 3 ) ceramics was investigated. Among the sintered ceramics, the sample doped with 0.1 mol% Tb 4 O 7 showed the maximum grain size and density. Doping with Tb 4 O 7 also...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science. Materials in electronics 2013-10, Vol.24 (10), p.4001-4007
Main Authors: Gan, Yingjie, Dong, Xiang, Peng, Shujie, Dong, Liang, Wang, Yu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c379t-ea8a2eaec1add6fc8eb1506b62a863af0f3a2d70e7a9ccf88b645bb6744d7f653
cites cdi_FETCH-LOGICAL-c379t-ea8a2eaec1add6fc8eb1506b62a863af0f3a2d70e7a9ccf88b645bb6744d7f653
container_end_page 4007
container_issue 10
container_start_page 4001
container_title Journal of materials science. Materials in electronics
container_volume 24
creator Gan, Yingjie
Dong, Xiang
Peng, Shujie
Dong, Liang
Wang, Yu
description The effect of the nonstoichiometric compound terbium dioxide (Tb 4 O 7 ) on the thermoelectric properties of tungsten trioxide (WO 3 ) ceramics was investigated. Among the sintered ceramics, the sample doped with 0.1 mol% Tb 4 O 7 showed the maximum grain size and density. Doping with Tb 4 O 7 also increased the electrical conductivity ( σ ) of the ceramics by about two orders of magnitude, and the sample doped with 0.1 mol% Tb 4 O 7 showed the highest electrical conductivity. The absolute value of Seebeck coefficient (| S |) of the doped samples increased as well. Consequently, the power factor ( σs 2 ) markedly increased. The sample doped with 2.0 mol% Tb 4 O 7 demonstrated the maximum σs 2 of 2.88 μW m −1  K −2 at 973 K, which was larger than the highest recorded σs 2 for WO 3 ceramics (2.71 μW m −1  K −2 at 1,023 K). In addition, the low-doped sample (0.1 mol%) exhibited excellent thermoelectric properties.
doi_str_mv 10.1007/s10854-013-1353-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1448718619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3073705951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-ea8a2eaec1add6fc8eb1506b62a863af0f3a2d70e7a9ccf88b645bb6744d7f653</originalsourceid><addsrcrecordid>eNp1kU1r1kAUhQdR8LX6A9wNiOAmdT4yH1lKsSpUurHQXbiZ3GmnJJnX-aD135uYIkVwdRf3OYdz7yHkLWennDHzMXNmVdswLhsulWzUM3LgysimteL6OTmwTpmmVUK8JK9yvmOM6VbaA6nfg0sxl1RdqQkpLCMtt5jmiBO6koKjxxSPmErATKOnpS43ueBC1118CCNShwnm4DIdV26k96HcUqBTvKcwx7qUPypMQ6gzHXfNa_LCw5TxzeM8IVfnn3-cfW0uLr98O_t00ThputIgWBAI6DiMo_bO4sAV04MWYLUEz7wEMRqGBjrnvLWDbtUwaNO2o_FayRPyYfddb_hZMZd-DtnhNMGCseaet6013Grerei7f9C7WNOyplspKZkxgsmV4ju1PS0n9P0xhRnSr56zfiui34vo1yL6rYh-C_H-0Rmyg8knWFzIf4XCmE4JuXFi5_K6Wm4wPUnwX_PfDCSbSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1433077203</pqid></control><display><type>article</type><title>Microstructure and thermoelectric properties of tungsten trioxide ceramics doped with a low amount of terbium dioxide</title><source>Springer Nature</source><creator>Gan, Yingjie ; Dong, Xiang ; Peng, Shujie ; Dong, Liang ; Wang, Yu</creator><creatorcontrib>Gan, Yingjie ; Dong, Xiang ; Peng, Shujie ; Dong, Liang ; Wang, Yu</creatorcontrib><description>The effect of the nonstoichiometric compound terbium dioxide (Tb 4 O 7 ) on the thermoelectric properties of tungsten trioxide (WO 3 ) ceramics was investigated. Among the sintered ceramics, the sample doped with 0.1 mol% Tb 4 O 7 showed the maximum grain size and density. Doping with Tb 4 O 7 also increased the electrical conductivity ( σ ) of the ceramics by about two orders of magnitude, and the sample doped with 0.1 mol% Tb 4 O 7 showed the highest electrical conductivity. The absolute value of Seebeck coefficient (| S |) of the doped samples increased as well. Consequently, the power factor ( σs 2 ) markedly increased. The sample doped with 2.0 mol% Tb 4 O 7 demonstrated the maximum σs 2 of 2.88 μW m −1  K −2 at 973 K, which was larger than the highest recorded σs 2 for WO 3 ceramics (2.71 μW m −1  K −2 at 1,023 K). In addition, the low-doped sample (0.1 mol%) exhibited excellent thermoelectric properties.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-013-1353-5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Applied sciences ; Ceramics ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Dioxides ; Electrical conductivity ; Electrical resistivity ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronic transport in multilayers, nanoscale materials and structures ; Electronics ; Exact sciences and technology ; Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties ; Materials ; Materials Science ; Optical and Electronic Materials ; Physics ; Resistivity ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Thermoelectricity ; Tungsten ; Tungsten oxides</subject><ispartof>Journal of materials science. Materials in electronics, 2013-10, Vol.24 (10), p.4001-4007</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-ea8a2eaec1add6fc8eb1506b62a863af0f3a2d70e7a9ccf88b645bb6744d7f653</citedby><cites>FETCH-LOGICAL-c379t-ea8a2eaec1add6fc8eb1506b62a863af0f3a2d70e7a9ccf88b645bb6744d7f653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27795235$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gan, Yingjie</creatorcontrib><creatorcontrib>Dong, Xiang</creatorcontrib><creatorcontrib>Peng, Shujie</creatorcontrib><creatorcontrib>Dong, Liang</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><title>Microstructure and thermoelectric properties of tungsten trioxide ceramics doped with a low amount of terbium dioxide</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>The effect of the nonstoichiometric compound terbium dioxide (Tb 4 O 7 ) on the thermoelectric properties of tungsten trioxide (WO 3 ) ceramics was investigated. Among the sintered ceramics, the sample doped with 0.1 mol% Tb 4 O 7 showed the maximum grain size and density. Doping with Tb 4 O 7 also increased the electrical conductivity ( σ ) of the ceramics by about two orders of magnitude, and the sample doped with 0.1 mol% Tb 4 O 7 showed the highest electrical conductivity. The absolute value of Seebeck coefficient (| S |) of the doped samples increased as well. Consequently, the power factor ( σs 2 ) markedly increased. The sample doped with 2.0 mol% Tb 4 O 7 demonstrated the maximum σs 2 of 2.88 μW m −1  K −2 at 973 K, which was larger than the highest recorded σs 2 for WO 3 ceramics (2.71 μW m −1  K −2 at 1,023 K). In addition, the low-doped sample (0.1 mol%) exhibited excellent thermoelectric properties.</description><subject>Applied sciences</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Dioxides</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronic transport in multilayers, nanoscale materials and structures</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</subject><subject>Materials</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Resistivity</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Thermoelectricity</subject><subject>Tungsten</subject><subject>Tungsten oxides</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kU1r1kAUhQdR8LX6A9wNiOAmdT4yH1lKsSpUurHQXbiZ3GmnJJnX-aD135uYIkVwdRf3OYdz7yHkLWennDHzMXNmVdswLhsulWzUM3LgysimteL6OTmwTpmmVUK8JK9yvmOM6VbaA6nfg0sxl1RdqQkpLCMtt5jmiBO6koKjxxSPmErATKOnpS43ueBC1118CCNShwnm4DIdV26k96HcUqBTvKcwx7qUPypMQ6gzHXfNa_LCw5TxzeM8IVfnn3-cfW0uLr98O_t00ThputIgWBAI6DiMo_bO4sAV04MWYLUEz7wEMRqGBjrnvLWDbtUwaNO2o_FayRPyYfddb_hZMZd-DtnhNMGCseaet6013Grerei7f9C7WNOyplspKZkxgsmV4ju1PS0n9P0xhRnSr56zfiui34vo1yL6rYh-C_H-0Rmyg8knWFzIf4XCmE4JuXFi5_K6Wm4wPUnwX_PfDCSbSA</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Gan, Yingjie</creator><creator>Dong, Xiang</creator><creator>Peng, Shujie</creator><creator>Dong, Liang</creator><creator>Wang, Yu</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><scope>7QQ</scope></search><sort><creationdate>20131001</creationdate><title>Microstructure and thermoelectric properties of tungsten trioxide ceramics doped with a low amount of terbium dioxide</title><author>Gan, Yingjie ; Dong, Xiang ; Peng, Shujie ; Dong, Liang ; Wang, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-ea8a2eaec1add6fc8eb1506b62a863af0f3a2d70e7a9ccf88b645bb6744d7f653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Dioxides</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronic transport in multilayers, nanoscale materials and structures</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</topic><topic>Materials</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Resistivity</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Thermoelectricity</topic><topic>Tungsten</topic><topic>Tungsten oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gan, Yingjie</creatorcontrib><creatorcontrib>Dong, Xiang</creatorcontrib><creatorcontrib>Peng, Shujie</creatorcontrib><creatorcontrib>Dong, Liang</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Ceramic Abstracts</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gan, Yingjie</au><au>Dong, Xiang</au><au>Peng, Shujie</au><au>Dong, Liang</au><au>Wang, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure and thermoelectric properties of tungsten trioxide ceramics doped with a low amount of terbium dioxide</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2013-10-01</date><risdate>2013</risdate><volume>24</volume><issue>10</issue><spage>4001</spage><epage>4007</epage><pages>4001-4007</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>The effect of the nonstoichiometric compound terbium dioxide (Tb 4 O 7 ) on the thermoelectric properties of tungsten trioxide (WO 3 ) ceramics was investigated. Among the sintered ceramics, the sample doped with 0.1 mol% Tb 4 O 7 showed the maximum grain size and density. Doping with Tb 4 O 7 also increased the electrical conductivity ( σ ) of the ceramics by about two orders of magnitude, and the sample doped with 0.1 mol% Tb 4 O 7 showed the highest electrical conductivity. The absolute value of Seebeck coefficient (| S |) of the doped samples increased as well. Consequently, the power factor ( σs 2 ) markedly increased. The sample doped with 2.0 mol% Tb 4 O 7 demonstrated the maximum σs 2 of 2.88 μW m −1  K −2 at 973 K, which was larger than the highest recorded σs 2 for WO 3 ceramics (2.71 μW m −1  K −2 at 1,023 K). In addition, the low-doped sample (0.1 mol%) exhibited excellent thermoelectric properties.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10854-013-1353-5</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2013-10, Vol.24 (10), p.4001-4007
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_miscellaneous_1448718619
source Springer Nature
subjects Applied sciences
Ceramics
Characterization and Evaluation of Materials
Chemistry and Materials Science
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Dioxides
Electrical conductivity
Electrical resistivity
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Electronic transport in multilayers, nanoscale materials and structures
Electronics
Exact sciences and technology
Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties
Materials
Materials Science
Optical and Electronic Materials
Physics
Resistivity
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
Thermoelectricity
Tungsten
Tungsten oxides
title Microstructure and thermoelectric properties of tungsten trioxide ceramics doped with a low amount of terbium dioxide
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A02%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20and%20thermoelectric%20properties%20of%20tungsten%20trioxide%20ceramics%20doped%20with%20a%20low%20amount%20of%20terbium%20dioxide&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Gan,%20Yingjie&rft.date=2013-10-01&rft.volume=24&rft.issue=10&rft.spage=4001&rft.epage=4007&rft.pages=4001-4007&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-013-1353-5&rft_dat=%3Cproquest_cross%3E3073705951%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c379t-ea8a2eaec1add6fc8eb1506b62a863af0f3a2d70e7a9ccf88b645bb6744d7f653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1433077203&rft_id=info:pmid/&rfr_iscdi=true