Loading…
Bootstrap Variability Studies in ROC Analysis on Large Datasets
The nonparametric two-sample bootstrap is employed to compute uncertainties of measures in receiver operating characteristic (ROC) analysis on large datasets in areas such as biometrics, and so on. In this framework, the bootstrap variability was empirically studied without a normality assumption, e...
Saved in:
Published in: | Communications in statistics. Simulation and computation 2014-01, Vol.43 (1), p.225-236 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The nonparametric two-sample bootstrap is employed to compute uncertainties of measures in receiver operating characteristic (ROC) analysis on large datasets in areas such as biometrics, and so on. In this framework, the bootstrap variability was empirically studied without a normality assumption, exhaustively in five scenarios involving both high- and low-accuracy matching algorithms. With a tolerance 0.02 of the coefficient of variation, it was found that 2000 bootstrap replications were appropriate for ROC analysis on large datasets in order to reduce the bootstrap variance and ensure the accuracy of the computation. |
---|---|
ISSN: | 0361-0918 1532-4141 |
DOI: | 10.1080/03610918.2012.700362 |