Loading…
Statistical analysis of autoregressive fractionally integrated moving average models in R
The autoregressive fractionally integrated moving average (ARFIMA) processes are one of the best-known classes of long-memory models. In the package afmtools for R, we have implemented a number of statistical tools for analyzing ARFIMA models. In particular, this package contains functions for param...
Saved in:
Published in: | Computational statistics 2013-10, Vol.28 (5), p.2309-2331 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The autoregressive fractionally integrated moving average (ARFIMA) processes are one of the best-known classes of long-memory models. In the package afmtools for R, we have implemented a number of statistical tools for analyzing ARFIMA models. In particular, this package contains functions for parameter estimation, exact autocovariance calculation, predictive ability testing and impulse response function computation, among others. Furthermore, the implemented methods are illustrated with applications to real-life time series. |
---|---|
ISSN: | 0943-4062 1613-9658 |
DOI: | 10.1007/s00180-013-0408-7 |