Loading…

Microcantilever bend testing and finite element simulations of HIP-ed interface-free bulk Al and Al-Al HIP bonded interfaces

We report on the strength of Al-Al interfaces and the effects of chemical segregation and interfacial void formation on bond strength using microcantilever bend testing. Interfaces are synthesised via hot isostatic pressing. Microcantilevers of several nominal dimensions were fabricated via focused...

Full description

Saved in:
Bibliographic Details
Published in:Philosophical magazine (Abingdon, England) England), 2013-07, Vol.93 (21), p.2749-2758
Main Authors: Mara, Nathan A., Crapps, Justin, Wynn, Thomas A., Clarke, Kester D., Antoniou, Antonia, Dickerson, Patricia O., Dombrowski, David E., Mihaila, Bogdan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c370t-db03026e503e68318bfb39accc6d73d52b6988f4bbbf435a8b0cf330e53ccf363
cites cdi_FETCH-LOGICAL-c370t-db03026e503e68318bfb39accc6d73d52b6988f4bbbf435a8b0cf330e53ccf363
container_end_page 2758
container_issue 21
container_start_page 2749
container_title Philosophical magazine (Abingdon, England)
container_volume 93
creator Mara, Nathan A.
Crapps, Justin
Wynn, Thomas A.
Clarke, Kester D.
Antoniou, Antonia
Dickerson, Patricia O.
Dombrowski, David E.
Mihaila, Bogdan
description We report on the strength of Al-Al interfaces and the effects of chemical segregation and interfacial void formation on bond strength using microcantilever bend testing. Interfaces are synthesised via hot isostatic pressing. Microcantilevers of several nominal dimensions were fabricated via focused ion beam and deformed in a nanoindenter. We find increased cantilever strength as a function of decreasing sample size, with a linear dependence of the yield strength on the inverse square root of the length scale characteristic to the cantilever cross-section. The presence of pores and chemical segregation decreases the yield strength of the material by 17% and the accommodated strain energy by 10-15% for strain values in the 6-12% range.
doi_str_mv 10.1080/14786435.2013.786192
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1448749190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1448749190</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-db03026e503e68318bfb39accc6d73d52b6988f4bbbf435a8b0cf330e53ccf363</originalsourceid><addsrcrecordid>eNp9kE1LHTEUhgdpQWv7D7rIptDNXJM5mZnMSi5SP0CxC12HJHNS0mYSTXIrQn-8uV4VV13lITzvOZy3ab4yumJU0CPGRzFw6FcdZbCqzKZurznYfrcD5_DhjaHfbz7l_JvSjvaUHzT_rpxJ0ahQnMe_mIjGMJOCubjwi6jK1gVXkKDHBUMh2S0br4qLIZNoyfnFzxZn4kLBZJXB1iZEojf-D1n75_zat5WqR3QM83s3f24-WuUzfnl5D5vb0x83J-ft5fXZxcn6sjUw0tLOmgLtBuwp4CCACW01TMoYM8wjzH2nh0kIy7XWtl6ohKbGAlDswVQY4LD5vpt7l-L9pt4mF5cNeq8Cxk2WjHMx8olNtKp8p9ZWck5o5V1yi0qPklG5LVu-li23Zctd2TX27WWDykZ5m1QwLr9lu7EXMDGo3vHOc8HGtKiHmPwsi3r0Mb2G4L-bngBxrJOT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1448749190</pqid></control><display><type>article</type><title>Microcantilever bend testing and finite element simulations of HIP-ed interface-free bulk Al and Al-Al HIP bonded interfaces</title><source>Taylor and Francis Science and Technology Collection</source><creator>Mara, Nathan A. ; Crapps, Justin ; Wynn, Thomas A. ; Clarke, Kester D. ; Antoniou, Antonia ; Dickerson, Patricia O. ; Dombrowski, David E. ; Mihaila, Bogdan</creator><creatorcontrib>Mara, Nathan A. ; Crapps, Justin ; Wynn, Thomas A. ; Clarke, Kester D. ; Antoniou, Antonia ; Dickerson, Patricia O. ; Dombrowski, David E. ; Mihaila, Bogdan</creatorcontrib><description>We report on the strength of Al-Al interfaces and the effects of chemical segregation and interfacial void formation on bond strength using microcantilever bend testing. Interfaces are synthesised via hot isostatic pressing. Microcantilevers of several nominal dimensions were fabricated via focused ion beam and deformed in a nanoindenter. We find increased cantilever strength as a function of decreasing sample size, with a linear dependence of the yield strength on the inverse square root of the length scale characteristic to the cantilever cross-section. The presence of pores and chemical segregation decreases the yield strength of the material by 17% and the accommodated strain energy by 10-15% for strain values in the 6-12% range.</description><identifier>ISSN: 1478-6435</identifier><identifier>EISSN: 1478-6443</identifier><identifier>DOI: 10.1080/14786435.2013.786192</identifier><language>eng</language><publisher>Abingdon: Routledge</publisher><subject>Aluminum ; aluminum alloys ; Applied sciences ; Bend tests ; bending test ; Condensed matter: structure, mechanical and thermal properties ; Elasticity, elastic constants ; Elasticity. Plasticity ; Equations of state, phase equilibria, and phase transitions ; Exact sciences and technology ; finite element analysis ; Hot isostatic pressing ; hot isostatic pressing (HIP) ; Mechanical and acoustical properties of condensed matter ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Mechanical properties of solids ; Metals. Metallurgy ; nanoindentation ; Nanostructure ; Physics ; Segregations ; Solubility, segregation, and mixing; phase separation ; Strain ; Strength ; Yield strength</subject><ispartof>Philosophical magazine (Abingdon, England), 2013-07, Vol.93 (21), p.2749-2758</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2013</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-db03026e503e68318bfb39accc6d73d52b6988f4bbbf435a8b0cf330e53ccf363</citedby><cites>FETCH-LOGICAL-c370t-db03026e503e68318bfb39accc6d73d52b6988f4bbbf435a8b0cf330e53ccf363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27583913$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mara, Nathan A.</creatorcontrib><creatorcontrib>Crapps, Justin</creatorcontrib><creatorcontrib>Wynn, Thomas A.</creatorcontrib><creatorcontrib>Clarke, Kester D.</creatorcontrib><creatorcontrib>Antoniou, Antonia</creatorcontrib><creatorcontrib>Dickerson, Patricia O.</creatorcontrib><creatorcontrib>Dombrowski, David E.</creatorcontrib><creatorcontrib>Mihaila, Bogdan</creatorcontrib><title>Microcantilever bend testing and finite element simulations of HIP-ed interface-free bulk Al and Al-Al HIP bonded interfaces</title><title>Philosophical magazine (Abingdon, England)</title><description>We report on the strength of Al-Al interfaces and the effects of chemical segregation and interfacial void formation on bond strength using microcantilever bend testing. Interfaces are synthesised via hot isostatic pressing. Microcantilevers of several nominal dimensions were fabricated via focused ion beam and deformed in a nanoindenter. We find increased cantilever strength as a function of decreasing sample size, with a linear dependence of the yield strength on the inverse square root of the length scale characteristic to the cantilever cross-section. The presence of pores and chemical segregation decreases the yield strength of the material by 17% and the accommodated strain energy by 10-15% for strain values in the 6-12% range.</description><subject>Aluminum</subject><subject>aluminum alloys</subject><subject>Applied sciences</subject><subject>Bend tests</subject><subject>bending test</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Elasticity, elastic constants</subject><subject>Elasticity. Plasticity</subject><subject>Equations of state, phase equilibria, and phase transitions</subject><subject>Exact sciences and technology</subject><subject>finite element analysis</subject><subject>Hot isostatic pressing</subject><subject>hot isostatic pressing (HIP)</subject><subject>Mechanical and acoustical properties of condensed matter</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Mechanical properties of solids</subject><subject>Metals. Metallurgy</subject><subject>nanoindentation</subject><subject>Nanostructure</subject><subject>Physics</subject><subject>Segregations</subject><subject>Solubility, segregation, and mixing; phase separation</subject><subject>Strain</subject><subject>Strength</subject><subject>Yield strength</subject><issn>1478-6435</issn><issn>1478-6443</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LHTEUhgdpQWv7D7rIptDNXJM5mZnMSi5SP0CxC12HJHNS0mYSTXIrQn-8uV4VV13lITzvOZy3ab4yumJU0CPGRzFw6FcdZbCqzKZurznYfrcD5_DhjaHfbz7l_JvSjvaUHzT_rpxJ0ahQnMe_mIjGMJOCubjwi6jK1gVXkKDHBUMh2S0br4qLIZNoyfnFzxZn4kLBZJXB1iZEojf-D1n75_zat5WqR3QM83s3f24-WuUzfnl5D5vb0x83J-ft5fXZxcn6sjUw0tLOmgLtBuwp4CCACW01TMoYM8wjzH2nh0kIy7XWtl6ohKbGAlDswVQY4LD5vpt7l-L9pt4mF5cNeq8Cxk2WjHMx8olNtKp8p9ZWck5o5V1yi0qPklG5LVu-li23Zctd2TX27WWDykZ5m1QwLr9lu7EXMDGo3vHOc8HGtKiHmPwsi3r0Mb2G4L-bngBxrJOT</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Mara, Nathan A.</creator><creator>Crapps, Justin</creator><creator>Wynn, Thomas A.</creator><creator>Clarke, Kester D.</creator><creator>Antoniou, Antonia</creator><creator>Dickerson, Patricia O.</creator><creator>Dombrowski, David E.</creator><creator>Mihaila, Bogdan</creator><general>Routledge</general><general>Taylor &amp; Francis</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130701</creationdate><title>Microcantilever bend testing and finite element simulations of HIP-ed interface-free bulk Al and Al-Al HIP bonded interfaces</title><author>Mara, Nathan A. ; Crapps, Justin ; Wynn, Thomas A. ; Clarke, Kester D. ; Antoniou, Antonia ; Dickerson, Patricia O. ; Dombrowski, David E. ; Mihaila, Bogdan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-db03026e503e68318bfb39accc6d73d52b6988f4bbbf435a8b0cf330e53ccf363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aluminum</topic><topic>aluminum alloys</topic><topic>Applied sciences</topic><topic>Bend tests</topic><topic>bending test</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Elasticity, elastic constants</topic><topic>Elasticity. Plasticity</topic><topic>Equations of state, phase equilibria, and phase transitions</topic><topic>Exact sciences and technology</topic><topic>finite element analysis</topic><topic>Hot isostatic pressing</topic><topic>hot isostatic pressing (HIP)</topic><topic>Mechanical and acoustical properties of condensed matter</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Mechanical properties of solids</topic><topic>Metals. Metallurgy</topic><topic>nanoindentation</topic><topic>Nanostructure</topic><topic>Physics</topic><topic>Segregations</topic><topic>Solubility, segregation, and mixing; phase separation</topic><topic>Strain</topic><topic>Strength</topic><topic>Yield strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mara, Nathan A.</creatorcontrib><creatorcontrib>Crapps, Justin</creatorcontrib><creatorcontrib>Wynn, Thomas A.</creatorcontrib><creatorcontrib>Clarke, Kester D.</creatorcontrib><creatorcontrib>Antoniou, Antonia</creatorcontrib><creatorcontrib>Dickerson, Patricia O.</creatorcontrib><creatorcontrib>Dombrowski, David E.</creatorcontrib><creatorcontrib>Mihaila, Bogdan</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Philosophical magazine (Abingdon, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mara, Nathan A.</au><au>Crapps, Justin</au><au>Wynn, Thomas A.</au><au>Clarke, Kester D.</au><au>Antoniou, Antonia</au><au>Dickerson, Patricia O.</au><au>Dombrowski, David E.</au><au>Mihaila, Bogdan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microcantilever bend testing and finite element simulations of HIP-ed interface-free bulk Al and Al-Al HIP bonded interfaces</atitle><jtitle>Philosophical magazine (Abingdon, England)</jtitle><date>2013-07-01</date><risdate>2013</risdate><volume>93</volume><issue>21</issue><spage>2749</spage><epage>2758</epage><pages>2749-2758</pages><issn>1478-6435</issn><eissn>1478-6443</eissn><abstract>We report on the strength of Al-Al interfaces and the effects of chemical segregation and interfacial void formation on bond strength using microcantilever bend testing. Interfaces are synthesised via hot isostatic pressing. Microcantilevers of several nominal dimensions were fabricated via focused ion beam and deformed in a nanoindenter. We find increased cantilever strength as a function of decreasing sample size, with a linear dependence of the yield strength on the inverse square root of the length scale characteristic to the cantilever cross-section. The presence of pores and chemical segregation decreases the yield strength of the material by 17% and the accommodated strain energy by 10-15% for strain values in the 6-12% range.</abstract><cop>Abingdon</cop><pub>Routledge</pub><doi>10.1080/14786435.2013.786192</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1478-6435
ispartof Philosophical magazine (Abingdon, England), 2013-07, Vol.93 (21), p.2749-2758
issn 1478-6435
1478-6443
language eng
recordid cdi_proquest_miscellaneous_1448749190
source Taylor and Francis Science and Technology Collection
subjects Aluminum
aluminum alloys
Applied sciences
Bend tests
bending test
Condensed matter: structure, mechanical and thermal properties
Elasticity, elastic constants
Elasticity. Plasticity
Equations of state, phase equilibria, and phase transitions
Exact sciences and technology
finite element analysis
Hot isostatic pressing
hot isostatic pressing (HIP)
Mechanical and acoustical properties of condensed matter
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Mechanical properties of solids
Metals. Metallurgy
nanoindentation
Nanostructure
Physics
Segregations
Solubility, segregation, and mixing
phase separation
Strain
Strength
Yield strength
title Microcantilever bend testing and finite element simulations of HIP-ed interface-free bulk Al and Al-Al HIP bonded interfaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A52%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microcantilever%20bend%20testing%20and%20finite%20element%20simulations%20of%20HIP-ed%20interface-free%20bulk%20Al%20and%20Al-Al%20HIP%20bonded%20interfaces&rft.jtitle=Philosophical%20magazine%20(Abingdon,%20England)&rft.au=Mara,%20Nathan%20A.&rft.date=2013-07-01&rft.volume=93&rft.issue=21&rft.spage=2749&rft.epage=2758&rft.pages=2749-2758&rft.issn=1478-6435&rft.eissn=1478-6443&rft_id=info:doi/10.1080/14786435.2013.786192&rft_dat=%3Cproquest_cross%3E1448749190%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c370t-db03026e503e68318bfb39accc6d73d52b6988f4bbbf435a8b0cf330e53ccf363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1448749190&rft_id=info:pmid/&rfr_iscdi=true