Loading…

Solution of a kinetic equation for diatomic gas with the use of differential scattering cross sections computed by the method of classical trajectories

A collision integral is constructed taking into account the rotational degrees of freedom of the gas molecules. Its truncation error is shown to be second order in the rotational velocity mesh size. In the solution of the kinetic equation, the resulting collision integral is directly computed using...

Full description

Saved in:
Bibliographic Details
Published in:Computational mathematics and mathematical physics 2013-07, Vol.53 (7), p.1026-1043
Main Authors: Anikin, Yu. A., Dodulad, O. I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-c0c31eb80db91f7af52e69243d9654801ecf477bcf415b27ce38b6e2a51b3ad33
cites cdi_FETCH-LOGICAL-c349t-c0c31eb80db91f7af52e69243d9654801ecf477bcf415b27ce38b6e2a51b3ad33
container_end_page 1043
container_issue 7
container_start_page 1026
container_title Computational mathematics and mathematical physics
container_volume 53
creator Anikin, Yu. A.
Dodulad, O. I.
description A collision integral is constructed taking into account the rotational degrees of freedom of the gas molecules. Its truncation error is shown to be second order in the rotational velocity mesh size. In the solution of the kinetic equation, the resulting collision integral is directly computed using a projection method. Preliminarily, the differential scattering cross sections of nitrogen molecules are computed by applying the method of classical trajectories. The resulting cross section values are tabulated in multimillion data arrays. The one-dimensional problems of shock wave structure and heat transfer between two plates are computed as tests, and the results are compared with experimental data. The convergence of the results with decreasing rotational velocity mesh size is analyzed.
doi_str_mv 10.1134/S096554251307004X
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1448752205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1448752205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-c0c31eb80db91f7af52e69243d9654801ecf477bcf415b27ce38b6e2a51b3ad33</originalsourceid><addsrcrecordid>eNp1kctq3DAUhkVJoJPLA3Qn6KYbJ7r6siwhTQoDWaSB7IwsH81oalsTHZmSJ-nrRp7poqR0I8E53_cjnUPIJ86uOJfq-pE1pdZKaC5ZxZh6_kBWXGtdlGUpTshqaRdL_yM5Q9wxxsumlivy-zEMc_JhosFRQ3_6CZK3FF5mc6i6EGnvTQpjrm4M0l8-bWnaAp0RFqf3zkGEKXkzULQmJYh-2lAbAyJFsEsMUhvG_Zygp93rwR4hbUO_BNjBIHqb7RTNLvMhesALcurMgHD55z4nT99uf9zcF-uHu-83X9eFlapJhWVWcuhq1ncNd5VxWkDZCCX7_F9VMw7Wqarq8sl1JyoLsu5KEEbzTppeynPy5Zi7j-FlBkzt6NHCMJgJwowtV6qutBBMZ_TzO3QX5jjl12WKc6ZYo5tM8SN1GEAE1-6jH018bTlrl1W1_6wqO-Lo4H6ZHcS_kv8rvQEYeZip</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1411040959</pqid></control><display><type>article</type><title>Solution of a kinetic equation for diatomic gas with the use of differential scattering cross sections computed by the method of classical trajectories</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Anikin, Yu. A. ; Dodulad, O. I.</creator><creatorcontrib>Anikin, Yu. A. ; Dodulad, O. I.</creatorcontrib><description>A collision integral is constructed taking into account the rotational degrees of freedom of the gas molecules. Its truncation error is shown to be second order in the rotational velocity mesh size. In the solution of the kinetic equation, the resulting collision integral is directly computed using a projection method. Preliminarily, the differential scattering cross sections of nitrogen molecules are computed by applying the method of classical trajectories. The resulting cross section values are tabulated in multimillion data arrays. The one-dimensional problems of shock wave structure and heat transfer between two plates are computed as tests, and the results are compared with experimental data. The convergence of the results with decreasing rotational velocity mesh size is analyzed.</description><identifier>ISSN: 0965-5425</identifier><identifier>EISSN: 1555-6662</identifier><identifier>DOI: 10.1134/S096554251307004X</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Approximation ; Collision dynamics ; Computation ; Computational mathematics ; Computational Mathematics and Numerical Analysis ; Gases ; Integrals ; Kinetic equations ; Kinetics ; Mathematical analysis ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Methods ; Monte Carlo simulation ; Nitrogen ; Particle physics ; Physics ; Rotation ; Scattering ; Studies ; Trajectories ; Velocity</subject><ispartof>Computational mathematics and mathematical physics, 2013-07, Vol.53 (7), p.1026-1043</ispartof><rights>Pleiades Publishing, Ltd. 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-c0c31eb80db91f7af52e69243d9654801ecf477bcf415b27ce38b6e2a51b3ad33</citedby><cites>FETCH-LOGICAL-c349t-c0c31eb80db91f7af52e69243d9654801ecf477bcf415b27ce38b6e2a51b3ad33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1411040959?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363</link.rule.ids></links><search><creatorcontrib>Anikin, Yu. A.</creatorcontrib><creatorcontrib>Dodulad, O. I.</creatorcontrib><title>Solution of a kinetic equation for diatomic gas with the use of differential scattering cross sections computed by the method of classical trajectories</title><title>Computational mathematics and mathematical physics</title><addtitle>Comput. Math. and Math. Phys</addtitle><description>A collision integral is constructed taking into account the rotational degrees of freedom of the gas molecules. Its truncation error is shown to be second order in the rotational velocity mesh size. In the solution of the kinetic equation, the resulting collision integral is directly computed using a projection method. Preliminarily, the differential scattering cross sections of nitrogen molecules are computed by applying the method of classical trajectories. The resulting cross section values are tabulated in multimillion data arrays. The one-dimensional problems of shock wave structure and heat transfer between two plates are computed as tests, and the results are compared with experimental data. The convergence of the results with decreasing rotational velocity mesh size is analyzed.</description><subject>Approximation</subject><subject>Collision dynamics</subject><subject>Computation</subject><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Gases</subject><subject>Integrals</subject><subject>Kinetic equations</subject><subject>Kinetics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Methods</subject><subject>Monte Carlo simulation</subject><subject>Nitrogen</subject><subject>Particle physics</subject><subject>Physics</subject><subject>Rotation</subject><subject>Scattering</subject><subject>Studies</subject><subject>Trajectories</subject><subject>Velocity</subject><issn>0965-5425</issn><issn>1555-6662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kctq3DAUhkVJoJPLA3Qn6KYbJ7r6siwhTQoDWaSB7IwsH81oalsTHZmSJ-nrRp7poqR0I8E53_cjnUPIJ86uOJfq-pE1pdZKaC5ZxZh6_kBWXGtdlGUpTshqaRdL_yM5Q9wxxsumlivy-zEMc_JhosFRQ3_6CZK3FF5mc6i6EGnvTQpjrm4M0l8-bWnaAp0RFqf3zkGEKXkzULQmJYh-2lAbAyJFsEsMUhvG_Zygp93rwR4hbUO_BNjBIHqb7RTNLvMhesALcurMgHD55z4nT99uf9zcF-uHu-83X9eFlapJhWVWcuhq1ncNd5VxWkDZCCX7_F9VMw7Wqarq8sl1JyoLsu5KEEbzTppeynPy5Zi7j-FlBkzt6NHCMJgJwowtV6qutBBMZ_TzO3QX5jjl12WKc6ZYo5tM8SN1GEAE1-6jH018bTlrl1W1_6wqO-Lo4H6ZHcS_kv8rvQEYeZip</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Anikin, Yu. A.</creator><creator>Dodulad, O. I.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20130701</creationdate><title>Solution of a kinetic equation for diatomic gas with the use of differential scattering cross sections computed by the method of classical trajectories</title><author>Anikin, Yu. A. ; Dodulad, O. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-c0c31eb80db91f7af52e69243d9654801ecf477bcf415b27ce38b6e2a51b3ad33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Approximation</topic><topic>Collision dynamics</topic><topic>Computation</topic><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Gases</topic><topic>Integrals</topic><topic>Kinetic equations</topic><topic>Kinetics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Methods</topic><topic>Monte Carlo simulation</topic><topic>Nitrogen</topic><topic>Particle physics</topic><topic>Physics</topic><topic>Rotation</topic><topic>Scattering</topic><topic>Studies</topic><topic>Trajectories</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anikin, Yu. A.</creatorcontrib><creatorcontrib>Dodulad, O. I.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Computational mathematics and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anikin, Yu. A.</au><au>Dodulad, O. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solution of a kinetic equation for diatomic gas with the use of differential scattering cross sections computed by the method of classical trajectories</atitle><jtitle>Computational mathematics and mathematical physics</jtitle><stitle>Comput. Math. and Math. Phys</stitle><date>2013-07-01</date><risdate>2013</risdate><volume>53</volume><issue>7</issue><spage>1026</spage><epage>1043</epage><pages>1026-1043</pages><issn>0965-5425</issn><eissn>1555-6662</eissn><abstract>A collision integral is constructed taking into account the rotational degrees of freedom of the gas molecules. Its truncation error is shown to be second order in the rotational velocity mesh size. In the solution of the kinetic equation, the resulting collision integral is directly computed using a projection method. Preliminarily, the differential scattering cross sections of nitrogen molecules are computed by applying the method of classical trajectories. The resulting cross section values are tabulated in multimillion data arrays. The one-dimensional problems of shock wave structure and heat transfer between two plates are computed as tests, and the results are compared with experimental data. The convergence of the results with decreasing rotational velocity mesh size is analyzed.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1134/S096554251307004X</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0965-5425
ispartof Computational mathematics and mathematical physics, 2013-07, Vol.53 (7), p.1026-1043
issn 0965-5425
1555-6662
language eng
recordid cdi_proquest_miscellaneous_1448752205
source ABI/INFORM Global; Springer Nature
subjects Approximation
Collision dynamics
Computation
Computational mathematics
Computational Mathematics and Numerical Analysis
Gases
Integrals
Kinetic equations
Kinetics
Mathematical analysis
Mathematical models
Mathematics
Mathematics and Statistics
Methods
Monte Carlo simulation
Nitrogen
Particle physics
Physics
Rotation
Scattering
Studies
Trajectories
Velocity
title Solution of a kinetic equation for diatomic gas with the use of differential scattering cross sections computed by the method of classical trajectories
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A15%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solution%20of%20a%20kinetic%20equation%20for%20diatomic%20gas%20with%20the%20use%20of%20differential%20scattering%20cross%20sections%20computed%20by%20the%20method%20of%20classical%20trajectories&rft.jtitle=Computational%20mathematics%20and%20mathematical%20physics&rft.au=Anikin,%20Yu.%20A.&rft.date=2013-07-01&rft.volume=53&rft.issue=7&rft.spage=1026&rft.epage=1043&rft.pages=1026-1043&rft.issn=0965-5425&rft.eissn=1555-6662&rft_id=info:doi/10.1134/S096554251307004X&rft_dat=%3Cproquest_cross%3E1448752205%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-c0c31eb80db91f7af52e69243d9654801ecf477bcf415b27ce38b6e2a51b3ad33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1411040959&rft_id=info:pmid/&rfr_iscdi=true