Loading…

Motional heterogeneity in human acetylcholinesterase revealed by a non-Gaussian model for elastic incoherent neutron scattering

We study the dynamical transition of human acetylcholinesterase by analyzing elastic neutron scattering data with a simulation gauged analytical model that goes beyond the standard Gaussian approximation for the elastic incoherent structure factor [G. R. Kneller and K. Hinsen, J. Chem. Phys. 131, 04...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2013-10, Vol.139 (16), p.165102-165102
Main Authors: Peters, Judith, Kneller, Gerald R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c320t-c082f7f092abcaa847821c0b0ce0942ca99bd5864eac58304859957d849c1eb03
cites cdi_FETCH-LOGICAL-c320t-c082f7f092abcaa847821c0b0ce0942ca99bd5864eac58304859957d849c1eb03
container_end_page 165102
container_issue 16
container_start_page 165102
container_title The Journal of chemical physics
container_volume 139
creator Peters, Judith
Kneller, Gerald R
description We study the dynamical transition of human acetylcholinesterase by analyzing elastic neutron scattering data with a simulation gauged analytical model that goes beyond the standard Gaussian approximation for the elastic incoherent structure factor [G. R. Kneller and K. Hinsen, J. Chem. Phys. 131, 045104 (2009)]. The model exploits the whole available momentum transfer range in the experimental data and yields not only a neutron-weighted average of the atomic mean square position fluctuations, but also an estimation for their distribution. Applied to the neutron scattering data from human acetylcholinesterase, it reveals a strong increase of the motional heterogeneity at the two transition temperatures T = 150 K and T = 220 K, respectively, which can be located with less ambiguity than with the Gaussian model. We find that the first transition is essentially characterized by a change in the form of the elastic scattering profile and the second by a homogeneous increase of all motional amplitudes. These results are in agreement with previous combined experimental and simulation studies of protein dynamics, which attribute the first transition to an onset of methyl rotations and the second to more unspecific diffusion processes involving large amplitude motions.
doi_str_mv 10.1063/1.4825199
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1449274152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1449274152</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-c082f7f092abcaa847821c0b0ce0942ca99bd5864eac58304859957d849c1eb03</originalsourceid><addsrcrecordid>eNo90EFP3DAQhmELgWBLe-gfQD7SQ2DsOIl9rBDdVqLqBc7RxJnsunJssJ1Ke-Kvk4ptT3N59ErzMfZZwI2Atr4VN0rLRhhzwjYCtKm61sAp2wBIUZkW2gv2IeffACA6qc7ZhVRCS9D1hr3-jMXFgJ7vqVCKOwrkyoG7wPfLjIGjpXLwdh-9C5RXgpl4oj-EnkY-HDjyEEO1xSVnt_o5juT5FBMnj7k4u6Zs3FOiUHigpaQYeLZY1pQLu4_sbEKf6dPxXrKnb_ePd9-rh1_bH3dfHypbSyiVBS2nbgIjcbCIWnVaCgsDWAKjpEVjhrHRrSK0ja5B6caYphu1MlbQAPUlu37vPqf4sqyP9LPLlrzHQHHJvVDKyE6JRq70yzu1KeacaOqfk5sxHXoB_d-9e9Ef917t1TG7DDON_-W_ges3Rkd83Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1449274152</pqid></control><display><type>article</type><title>Motional heterogeneity in human acetylcholinesterase revealed by a non-Gaussian model for elastic incoherent neutron scattering</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP_美国物理联合会现刊(与NSTL共建)</source><creator>Peters, Judith ; Kneller, Gerald R</creator><creatorcontrib>Peters, Judith ; Kneller, Gerald R</creatorcontrib><description>We study the dynamical transition of human acetylcholinesterase by analyzing elastic neutron scattering data with a simulation gauged analytical model that goes beyond the standard Gaussian approximation for the elastic incoherent structure factor [G. R. Kneller and K. Hinsen, J. Chem. Phys. 131, 045104 (2009)]. The model exploits the whole available momentum transfer range in the experimental data and yields not only a neutron-weighted average of the atomic mean square position fluctuations, but also an estimation for their distribution. Applied to the neutron scattering data from human acetylcholinesterase, it reveals a strong increase of the motional heterogeneity at the two transition temperatures T = 150 K and T = 220 K, respectively, which can be located with less ambiguity than with the Gaussian model. We find that the first transition is essentially characterized by a change in the form of the elastic scattering profile and the second by a homogeneous increase of all motional amplitudes. These results are in agreement with previous combined experimental and simulation studies of protein dynamics, which attribute the first transition to an onset of methyl rotations and the second to more unspecific diffusion processes involving large amplitude motions.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4825199</identifier><identifier>PMID: 24182083</identifier><language>eng</language><publisher>United States</publisher><subject>Acetylcholinesterase - chemistry ; Acetylcholinesterase - metabolism ; Biocatalysis ; Elasticity ; Humans ; Hydrolysis ; Movement ; Neutron Diffraction</subject><ispartof>The Journal of chemical physics, 2013-10, Vol.139 (16), p.165102-165102</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-c082f7f092abcaa847821c0b0ce0942ca99bd5864eac58304859957d849c1eb03</citedby><cites>FETCH-LOGICAL-c320t-c082f7f092abcaa847821c0b0ce0942ca99bd5864eac58304859957d849c1eb03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,782,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24182083$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peters, Judith</creatorcontrib><creatorcontrib>Kneller, Gerald R</creatorcontrib><title>Motional heterogeneity in human acetylcholinesterase revealed by a non-Gaussian model for elastic incoherent neutron scattering</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We study the dynamical transition of human acetylcholinesterase by analyzing elastic neutron scattering data with a simulation gauged analytical model that goes beyond the standard Gaussian approximation for the elastic incoherent structure factor [G. R. Kneller and K. Hinsen, J. Chem. Phys. 131, 045104 (2009)]. The model exploits the whole available momentum transfer range in the experimental data and yields not only a neutron-weighted average of the atomic mean square position fluctuations, but also an estimation for their distribution. Applied to the neutron scattering data from human acetylcholinesterase, it reveals a strong increase of the motional heterogeneity at the two transition temperatures T = 150 K and T = 220 K, respectively, which can be located with less ambiguity than with the Gaussian model. We find that the first transition is essentially characterized by a change in the form of the elastic scattering profile and the second by a homogeneous increase of all motional amplitudes. These results are in agreement with previous combined experimental and simulation studies of protein dynamics, which attribute the first transition to an onset of methyl rotations and the second to more unspecific diffusion processes involving large amplitude motions.</description><subject>Acetylcholinesterase - chemistry</subject><subject>Acetylcholinesterase - metabolism</subject><subject>Biocatalysis</subject><subject>Elasticity</subject><subject>Humans</subject><subject>Hydrolysis</subject><subject>Movement</subject><subject>Neutron Diffraction</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo90EFP3DAQhmELgWBLe-gfQD7SQ2DsOIl9rBDdVqLqBc7RxJnsunJssJ1Ke-Kvk4ptT3N59ErzMfZZwI2Atr4VN0rLRhhzwjYCtKm61sAp2wBIUZkW2gv2IeffACA6qc7ZhVRCS9D1hr3-jMXFgJ7vqVCKOwrkyoG7wPfLjIGjpXLwdh-9C5RXgpl4oj-EnkY-HDjyEEO1xSVnt_o5juT5FBMnj7k4u6Zs3FOiUHigpaQYeLZY1pQLu4_sbEKf6dPxXrKnb_ePd9-rh1_bH3dfHypbSyiVBS2nbgIjcbCIWnVaCgsDWAKjpEVjhrHRrSK0ja5B6caYphu1MlbQAPUlu37vPqf4sqyP9LPLlrzHQHHJvVDKyE6JRq70yzu1KeacaOqfk5sxHXoB_d-9e9Ef917t1TG7DDON_-W_ges3Rkd83Q</recordid><startdate>20131028</startdate><enddate>20131028</enddate><creator>Peters, Judith</creator><creator>Kneller, Gerald R</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20131028</creationdate><title>Motional heterogeneity in human acetylcholinesterase revealed by a non-Gaussian model for elastic incoherent neutron scattering</title><author>Peters, Judith ; Kneller, Gerald R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-c082f7f092abcaa847821c0b0ce0942ca99bd5864eac58304859957d849c1eb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acetylcholinesterase - chemistry</topic><topic>Acetylcholinesterase - metabolism</topic><topic>Biocatalysis</topic><topic>Elasticity</topic><topic>Humans</topic><topic>Hydrolysis</topic><topic>Movement</topic><topic>Neutron Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peters, Judith</creatorcontrib><creatorcontrib>Kneller, Gerald R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peters, Judith</au><au>Kneller, Gerald R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Motional heterogeneity in human acetylcholinesterase revealed by a non-Gaussian model for elastic incoherent neutron scattering</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2013-10-28</date><risdate>2013</risdate><volume>139</volume><issue>16</issue><spage>165102</spage><epage>165102</epage><pages>165102-165102</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>We study the dynamical transition of human acetylcholinesterase by analyzing elastic neutron scattering data with a simulation gauged analytical model that goes beyond the standard Gaussian approximation for the elastic incoherent structure factor [G. R. Kneller and K. Hinsen, J. Chem. Phys. 131, 045104 (2009)]. The model exploits the whole available momentum transfer range in the experimental data and yields not only a neutron-weighted average of the atomic mean square position fluctuations, but also an estimation for their distribution. Applied to the neutron scattering data from human acetylcholinesterase, it reveals a strong increase of the motional heterogeneity at the two transition temperatures T = 150 K and T = 220 K, respectively, which can be located with less ambiguity than with the Gaussian model. We find that the first transition is essentially characterized by a change in the form of the elastic scattering profile and the second by a homogeneous increase of all motional amplitudes. These results are in agreement with previous combined experimental and simulation studies of protein dynamics, which attribute the first transition to an onset of methyl rotations and the second to more unspecific diffusion processes involving large amplitude motions.</abstract><cop>United States</cop><pmid>24182083</pmid><doi>10.1063/1.4825199</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2013-10, Vol.139 (16), p.165102-165102
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_miscellaneous_1449274152
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP_美国物理联合会现刊(与NSTL共建)
subjects Acetylcholinesterase - chemistry
Acetylcholinesterase - metabolism
Biocatalysis
Elasticity
Humans
Hydrolysis
Movement
Neutron Diffraction
title Motional heterogeneity in human acetylcholinesterase revealed by a non-Gaussian model for elastic incoherent neutron scattering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A54%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Motional%20heterogeneity%20in%20human%20acetylcholinesterase%20revealed%20by%20a%20non-Gaussian%20model%20for%20elastic%20incoherent%20neutron%20scattering&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Peters,%20Judith&rft.date=2013-10-28&rft.volume=139&rft.issue=16&rft.spage=165102&rft.epage=165102&rft.pages=165102-165102&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.4825199&rft_dat=%3Cproquest_cross%3E1449274152%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c320t-c082f7f092abcaa847821c0b0ce0942ca99bd5864eac58304859957d849c1eb03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1449274152&rft_id=info:pmid/24182083&rfr_iscdi=true