Loading…
Motional heterogeneity in human acetylcholinesterase revealed by a non-Gaussian model for elastic incoherent neutron scattering
We study the dynamical transition of human acetylcholinesterase by analyzing elastic neutron scattering data with a simulation gauged analytical model that goes beyond the standard Gaussian approximation for the elastic incoherent structure factor [G. R. Kneller and K. Hinsen, J. Chem. Phys. 131, 04...
Saved in:
Published in: | The Journal of chemical physics 2013-10, Vol.139 (16), p.165102-165102 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c320t-c082f7f092abcaa847821c0b0ce0942ca99bd5864eac58304859957d849c1eb03 |
---|---|
cites | cdi_FETCH-LOGICAL-c320t-c082f7f092abcaa847821c0b0ce0942ca99bd5864eac58304859957d849c1eb03 |
container_end_page | 165102 |
container_issue | 16 |
container_start_page | 165102 |
container_title | The Journal of chemical physics |
container_volume | 139 |
creator | Peters, Judith Kneller, Gerald R |
description | We study the dynamical transition of human acetylcholinesterase by analyzing elastic neutron scattering data with a simulation gauged analytical model that goes beyond the standard Gaussian approximation for the elastic incoherent structure factor [G. R. Kneller and K. Hinsen, J. Chem. Phys. 131, 045104 (2009)]. The model exploits the whole available momentum transfer range in the experimental data and yields not only a neutron-weighted average of the atomic mean square position fluctuations, but also an estimation for their distribution. Applied to the neutron scattering data from human acetylcholinesterase, it reveals a strong increase of the motional heterogeneity at the two transition temperatures T = 150 K and T = 220 K, respectively, which can be located with less ambiguity than with the Gaussian model. We find that the first transition is essentially characterized by a change in the form of the elastic scattering profile and the second by a homogeneous increase of all motional amplitudes. These results are in agreement with previous combined experimental and simulation studies of protein dynamics, which attribute the first transition to an onset of methyl rotations and the second to more unspecific diffusion processes involving large amplitude motions. |
doi_str_mv | 10.1063/1.4825199 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1449274152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1449274152</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-c082f7f092abcaa847821c0b0ce0942ca99bd5864eac58304859957d849c1eb03</originalsourceid><addsrcrecordid>eNo90EFP3DAQhmELgWBLe-gfQD7SQ2DsOIl9rBDdVqLqBc7RxJnsunJssJ1Ke-Kvk4ptT3N59ErzMfZZwI2Atr4VN0rLRhhzwjYCtKm61sAp2wBIUZkW2gv2IeffACA6qc7ZhVRCS9D1hr3-jMXFgJ7vqVCKOwrkyoG7wPfLjIGjpXLwdh-9C5RXgpl4oj-EnkY-HDjyEEO1xSVnt_o5juT5FBMnj7k4u6Zs3FOiUHigpaQYeLZY1pQLu4_sbEKf6dPxXrKnb_ePd9-rh1_bH3dfHypbSyiVBS2nbgIjcbCIWnVaCgsDWAKjpEVjhrHRrSK0ja5B6caYphu1MlbQAPUlu37vPqf4sqyP9LPLlrzHQHHJvVDKyE6JRq70yzu1KeacaOqfk5sxHXoB_d-9e9Ef917t1TG7DDON_-W_ges3Rkd83Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1449274152</pqid></control><display><type>article</type><title>Motional heterogeneity in human acetylcholinesterase revealed by a non-Gaussian model for elastic incoherent neutron scattering</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP_美国物理联合会现刊(与NSTL共建)</source><creator>Peters, Judith ; Kneller, Gerald R</creator><creatorcontrib>Peters, Judith ; Kneller, Gerald R</creatorcontrib><description>We study the dynamical transition of human acetylcholinesterase by analyzing elastic neutron scattering data with a simulation gauged analytical model that goes beyond the standard Gaussian approximation for the elastic incoherent structure factor [G. R. Kneller and K. Hinsen, J. Chem. Phys. 131, 045104 (2009)]. The model exploits the whole available momentum transfer range in the experimental data and yields not only a neutron-weighted average of the atomic mean square position fluctuations, but also an estimation for their distribution. Applied to the neutron scattering data from human acetylcholinesterase, it reveals a strong increase of the motional heterogeneity at the two transition temperatures T = 150 K and T = 220 K, respectively, which can be located with less ambiguity than with the Gaussian model. We find that the first transition is essentially characterized by a change in the form of the elastic scattering profile and the second by a homogeneous increase of all motional amplitudes. These results are in agreement with previous combined experimental and simulation studies of protein dynamics, which attribute the first transition to an onset of methyl rotations and the second to more unspecific diffusion processes involving large amplitude motions.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4825199</identifier><identifier>PMID: 24182083</identifier><language>eng</language><publisher>United States</publisher><subject>Acetylcholinesterase - chemistry ; Acetylcholinesterase - metabolism ; Biocatalysis ; Elasticity ; Humans ; Hydrolysis ; Movement ; Neutron Diffraction</subject><ispartof>The Journal of chemical physics, 2013-10, Vol.139 (16), p.165102-165102</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-c082f7f092abcaa847821c0b0ce0942ca99bd5864eac58304859957d849c1eb03</citedby><cites>FETCH-LOGICAL-c320t-c082f7f092abcaa847821c0b0ce0942ca99bd5864eac58304859957d849c1eb03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,782,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24182083$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peters, Judith</creatorcontrib><creatorcontrib>Kneller, Gerald R</creatorcontrib><title>Motional heterogeneity in human acetylcholinesterase revealed by a non-Gaussian model for elastic incoherent neutron scattering</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We study the dynamical transition of human acetylcholinesterase by analyzing elastic neutron scattering data with a simulation gauged analytical model that goes beyond the standard Gaussian approximation for the elastic incoherent structure factor [G. R. Kneller and K. Hinsen, J. Chem. Phys. 131, 045104 (2009)]. The model exploits the whole available momentum transfer range in the experimental data and yields not only a neutron-weighted average of the atomic mean square position fluctuations, but also an estimation for their distribution. Applied to the neutron scattering data from human acetylcholinesterase, it reveals a strong increase of the motional heterogeneity at the two transition temperatures T = 150 K and T = 220 K, respectively, which can be located with less ambiguity than with the Gaussian model. We find that the first transition is essentially characterized by a change in the form of the elastic scattering profile and the second by a homogeneous increase of all motional amplitudes. These results are in agreement with previous combined experimental and simulation studies of protein dynamics, which attribute the first transition to an onset of methyl rotations and the second to more unspecific diffusion processes involving large amplitude motions.</description><subject>Acetylcholinesterase - chemistry</subject><subject>Acetylcholinesterase - metabolism</subject><subject>Biocatalysis</subject><subject>Elasticity</subject><subject>Humans</subject><subject>Hydrolysis</subject><subject>Movement</subject><subject>Neutron Diffraction</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo90EFP3DAQhmELgWBLe-gfQD7SQ2DsOIl9rBDdVqLqBc7RxJnsunJssJ1Ke-Kvk4ptT3N59ErzMfZZwI2Atr4VN0rLRhhzwjYCtKm61sAp2wBIUZkW2gv2IeffACA6qc7ZhVRCS9D1hr3-jMXFgJ7vqVCKOwrkyoG7wPfLjIGjpXLwdh-9C5RXgpl4oj-EnkY-HDjyEEO1xSVnt_o5juT5FBMnj7k4u6Zs3FOiUHigpaQYeLZY1pQLu4_sbEKf6dPxXrKnb_ePd9-rh1_bH3dfHypbSyiVBS2nbgIjcbCIWnVaCgsDWAKjpEVjhrHRrSK0ja5B6caYphu1MlbQAPUlu37vPqf4sqyP9LPLlrzHQHHJvVDKyE6JRq70yzu1KeacaOqfk5sxHXoB_d-9e9Ef917t1TG7DDON_-W_ges3Rkd83Q</recordid><startdate>20131028</startdate><enddate>20131028</enddate><creator>Peters, Judith</creator><creator>Kneller, Gerald R</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20131028</creationdate><title>Motional heterogeneity in human acetylcholinesterase revealed by a non-Gaussian model for elastic incoherent neutron scattering</title><author>Peters, Judith ; Kneller, Gerald R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-c082f7f092abcaa847821c0b0ce0942ca99bd5864eac58304859957d849c1eb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acetylcholinesterase - chemistry</topic><topic>Acetylcholinesterase - metabolism</topic><topic>Biocatalysis</topic><topic>Elasticity</topic><topic>Humans</topic><topic>Hydrolysis</topic><topic>Movement</topic><topic>Neutron Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peters, Judith</creatorcontrib><creatorcontrib>Kneller, Gerald R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peters, Judith</au><au>Kneller, Gerald R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Motional heterogeneity in human acetylcholinesterase revealed by a non-Gaussian model for elastic incoherent neutron scattering</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2013-10-28</date><risdate>2013</risdate><volume>139</volume><issue>16</issue><spage>165102</spage><epage>165102</epage><pages>165102-165102</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>We study the dynamical transition of human acetylcholinesterase by analyzing elastic neutron scattering data with a simulation gauged analytical model that goes beyond the standard Gaussian approximation for the elastic incoherent structure factor [G. R. Kneller and K. Hinsen, J. Chem. Phys. 131, 045104 (2009)]. The model exploits the whole available momentum transfer range in the experimental data and yields not only a neutron-weighted average of the atomic mean square position fluctuations, but also an estimation for their distribution. Applied to the neutron scattering data from human acetylcholinesterase, it reveals a strong increase of the motional heterogeneity at the two transition temperatures T = 150 K and T = 220 K, respectively, which can be located with less ambiguity than with the Gaussian model. We find that the first transition is essentially characterized by a change in the form of the elastic scattering profile and the second by a homogeneous increase of all motional amplitudes. These results are in agreement with previous combined experimental and simulation studies of protein dynamics, which attribute the first transition to an onset of methyl rotations and the second to more unspecific diffusion processes involving large amplitude motions.</abstract><cop>United States</cop><pmid>24182083</pmid><doi>10.1063/1.4825199</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2013-10, Vol.139 (16), p.165102-165102 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_proquest_miscellaneous_1449274152 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP_美国物理联合会现刊(与NSTL共建) |
subjects | Acetylcholinesterase - chemistry Acetylcholinesterase - metabolism Biocatalysis Elasticity Humans Hydrolysis Movement Neutron Diffraction |
title | Motional heterogeneity in human acetylcholinesterase revealed by a non-Gaussian model for elastic incoherent neutron scattering |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A54%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Motional%20heterogeneity%20in%20human%20acetylcholinesterase%20revealed%20by%20a%20non-Gaussian%20model%20for%20elastic%20incoherent%20neutron%20scattering&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Peters,%20Judith&rft.date=2013-10-28&rft.volume=139&rft.issue=16&rft.spage=165102&rft.epage=165102&rft.pages=165102-165102&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.4825199&rft_dat=%3Cproquest_cross%3E1449274152%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c320t-c082f7f092abcaa847821c0b0ce0942ca99bd5864eac58304859957d849c1eb03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1449274152&rft_id=info:pmid/24182083&rfr_iscdi=true |