Loading…
Experimental characterisation for micromechanical modelling of CoCr stent fatigue
Abstract Fatigue of CoCr alloy stents has become a major concern in recent times, owing to cases of premature fracture, often driven by microstructural phenomena. This work presents the development of a micromechanical framework for fatigue design, based on experimental characterisation of a biomedi...
Saved in:
Published in: | Biomaterials 2014-01, Vol.35 (1), p.36-48 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Fatigue of CoCr alloy stents has become a major concern in recent times, owing to cases of premature fracture, often driven by microstructural phenomena. This work presents the development of a micromechanical framework for fatigue design, based on experimental characterisation of a biomedical grade CoCr alloy, including both microscopy and mechanical testing. Fatigue indicator parameters (FIPs) within the micromechanical framework are calibrated for the prediction of microstructure-sensitive fatigue crack initiation (FCI). A multi-scale CoCr stent model is developed, including a 3D global J2 continuum stent-artery model and a 2D micromechanical sub-model. Several microstructure realizations for the stent sub-model allow assessment of the effect of crystallographic orientations on stent fatigue crack initiation predictions. Predictions of FCI are compared with traditional Basquin-Goodman total life predictions, revealing more realistic scatter of data for the microstructure-based FIP approach. Comparison of stent predictions with performance of a 316L stent for the same generic design exposes the design as over-conservative for the CoCr alloy. In response, the micromechanical framework is used to modify the stent design for the CoCr alloy, improving design efficiency. |
---|---|
ISSN: | 0142-9612 1878-5905 |
DOI: | 10.1016/j.biomaterials.2013.09.087 |