Loading…

Recovery bed planning in cardiovascular surgery: a simulation case study

Recovery beds for cardiovascular surgical patients in the intensive care unit (ICU) and progressive care unit (PCU) are costly hospital resources that require effective management. This case study reports on the development and use of a discrete-event simulation model used to predict minimum bed nee...

Full description

Saved in:
Bibliographic Details
Published in:Health care management science 2013-12, Vol.16 (4), p.314-327
Main Authors: Marmor, Yariv N., Rohleder, Thomas R., Cook, David J., Huschka, Todd R., Thompson, Jeffrey E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c436t-23c886022ca779bc23712b212aebcac4f4e68e1c4898cbf63bc972ee3a076a2b3
cites cdi_FETCH-LOGICAL-c436t-23c886022ca779bc23712b212aebcac4f4e68e1c4898cbf63bc972ee3a076a2b3
container_end_page 327
container_issue 4
container_start_page 314
container_title Health care management science
container_volume 16
creator Marmor, Yariv N.
Rohleder, Thomas R.
Cook, David J.
Huschka, Todd R.
Thompson, Jeffrey E.
description Recovery beds for cardiovascular surgical patients in the intensive care unit (ICU) and progressive care unit (PCU) are costly hospital resources that require effective management. This case study reports on the development and use of a discrete-event simulation model used to predict minimum bed needs to achieve the high patient service level demanded at Mayo Clinic. In addition to bed predictions that incorporate surgery growth and new recovery protocols, the model was used to explore the effects of smoothing surgery schedules and transferring long-stay patients from the ICU. The model projected bed needs that were 30 % lower than the traditional bed-planning approach and the options explored by the practice could substantially reduce the number of beds required.
doi_str_mv 10.1007/s10729-013-9231-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1449769514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1449769514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-23c886022ca779bc23712b212aebcac4f4e68e1c4898cbf63bc972ee3a076a2b3</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMotlYfwI0MuHEzmvvFnRS1QkEQXYckkylT5lKTTqFvb4apIoKrHHK-85_DB8AlgrcIQnEXERRY5RCRXGGCcnYEpogJnCsi1XGqieS54hhOwFmMawghgxydggkmDEqG0RQs3rzrdj7sM-uLbFObtq3aVVa1mTOhqLqdia6vTchiH1YJu89MFqsmfW2rboCiz-K2L_bn4KQ0dfQXh3cGPp4e3-eLfPn6_DJ_WOaOEr7NMXFScoixM0Io6zARCFuMsPHWGUdL6rn0yFGppLMlJ9Ypgb0nBgpusCUzcDPmbkL32fu41U0Vna_T5b7ro0aUKsEVQzSh13_QddeHNl03UFIxRSFJFBopF7oYgy_1JlSNCXuNoB4061GzTpr1oFmzNHN1SO5t44ufiW-vCcAjEFOrTeJ-rf439QtHHodK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1448959403</pqid></control><display><type>article</type><title>Recovery bed planning in cardiovascular surgery: a simulation case study</title><source>EconLit s plnými texty</source><source>ABI/INFORM Global (ProQuest)</source><source>Springer Link</source><source>BSC - Ebsco (Business Source Ultimate)</source><creator>Marmor, Yariv N. ; Rohleder, Thomas R. ; Cook, David J. ; Huschka, Todd R. ; Thompson, Jeffrey E.</creator><creatorcontrib>Marmor, Yariv N. ; Rohleder, Thomas R. ; Cook, David J. ; Huschka, Todd R. ; Thompson, Jeffrey E.</creatorcontrib><description>Recovery beds for cardiovascular surgical patients in the intensive care unit (ICU) and progressive care unit (PCU) are costly hospital resources that require effective management. This case study reports on the development and use of a discrete-event simulation model used to predict minimum bed needs to achieve the high patient service level demanded at Mayo Clinic. In addition to bed predictions that incorporate surgery growth and new recovery protocols, the model was used to explore the effects of smoothing surgery schedules and transferring long-stay patients from the ICU. The model projected bed needs that were 30 % lower than the traditional bed-planning approach and the options explored by the practice could substantially reduce the number of beds required.</description><identifier>ISSN: 1386-9620</identifier><identifier>EISSN: 1572-9389</identifier><identifier>DOI: 10.1007/s10729-013-9231-5</identifier><identifier>PMID: 23508521</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Business and Management ; Cardiovascular Surgical Procedures - statistics &amp; numerical data ; Case studies ; Clinics ; Computer Simulation ; Costs ; Critical care ; Econometrics ; Financial analysis ; Health Administration ; Health care management ; Health Informatics ; Heart surgery ; Hospital Bed Capacity - statistics &amp; numerical data ; Hospitals ; Humans ; Intensive care ; Intensive Care Units - statistics &amp; numerical data ; Management ; Models, Statistical ; Needs Assessment ; Operations Research/Decision Theory ; Patient care planning ; Patient safety ; Planning Techniques ; Postoperative period ; Quality of service ; Recovery (Medical) ; Resource allocation ; Simulation ; Studies ; Workforce planning</subject><ispartof>Health care management science, 2013-12, Vol.16 (4), p.314-327</ispartof><rights>Springer Science+Business Media New York 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-23c886022ca779bc23712b212aebcac4f4e68e1c4898cbf63bc972ee3a076a2b3</citedby><cites>FETCH-LOGICAL-c436t-23c886022ca779bc23712b212aebcac4f4e68e1c4898cbf63bc972ee3a076a2b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1448959403/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1448959403?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,74895</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23508521$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marmor, Yariv N.</creatorcontrib><creatorcontrib>Rohleder, Thomas R.</creatorcontrib><creatorcontrib>Cook, David J.</creatorcontrib><creatorcontrib>Huschka, Todd R.</creatorcontrib><creatorcontrib>Thompson, Jeffrey E.</creatorcontrib><title>Recovery bed planning in cardiovascular surgery: a simulation case study</title><title>Health care management science</title><addtitle>Health Care Manag Sci</addtitle><addtitle>Health Care Manag Sci</addtitle><description>Recovery beds for cardiovascular surgical patients in the intensive care unit (ICU) and progressive care unit (PCU) are costly hospital resources that require effective management. This case study reports on the development and use of a discrete-event simulation model used to predict minimum bed needs to achieve the high patient service level demanded at Mayo Clinic. In addition to bed predictions that incorporate surgery growth and new recovery protocols, the model was used to explore the effects of smoothing surgery schedules and transferring long-stay patients from the ICU. The model projected bed needs that were 30 % lower than the traditional bed-planning approach and the options explored by the practice could substantially reduce the number of beds required.</description><subject>Business and Management</subject><subject>Cardiovascular Surgical Procedures - statistics &amp; numerical data</subject><subject>Case studies</subject><subject>Clinics</subject><subject>Computer Simulation</subject><subject>Costs</subject><subject>Critical care</subject><subject>Econometrics</subject><subject>Financial analysis</subject><subject>Health Administration</subject><subject>Health care management</subject><subject>Health Informatics</subject><subject>Heart surgery</subject><subject>Hospital Bed Capacity - statistics &amp; numerical data</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Intensive care</subject><subject>Intensive Care Units - statistics &amp; numerical data</subject><subject>Management</subject><subject>Models, Statistical</subject><subject>Needs Assessment</subject><subject>Operations Research/Decision Theory</subject><subject>Patient care planning</subject><subject>Patient safety</subject><subject>Planning Techniques</subject><subject>Postoperative period</subject><subject>Quality of service</subject><subject>Recovery (Medical)</subject><subject>Resource allocation</subject><subject>Simulation</subject><subject>Studies</subject><subject>Workforce planning</subject><issn>1386-9620</issn><issn>1572-9389</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kMtKAzEUhoMotlYfwI0MuHEzmvvFnRS1QkEQXYckkylT5lKTTqFvb4apIoKrHHK-85_DB8AlgrcIQnEXERRY5RCRXGGCcnYEpogJnCsi1XGqieS54hhOwFmMawghgxydggkmDEqG0RQs3rzrdj7sM-uLbFObtq3aVVa1mTOhqLqdia6vTchiH1YJu89MFqsmfW2rboCiz-K2L_bn4KQ0dfQXh3cGPp4e3-eLfPn6_DJ_WOaOEr7NMXFScoixM0Io6zARCFuMsPHWGUdL6rn0yFGppLMlJ9Ypgb0nBgpusCUzcDPmbkL32fu41U0Vna_T5b7ro0aUKsEVQzSh13_QddeHNl03UFIxRSFJFBopF7oYgy_1JlSNCXuNoB4061GzTpr1oFmzNHN1SO5t44ufiW-vCcAjEFOrTeJ-rf439QtHHodK</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Marmor, Yariv N.</creator><creator>Rohleder, Thomas R.</creator><creator>Cook, David J.</creator><creator>Huschka, Todd R.</creator><creator>Thompson, Jeffrey E.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88C</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20131201</creationdate><title>Recovery bed planning in cardiovascular surgery: a simulation case study</title><author>Marmor, Yariv N. ; Rohleder, Thomas R. ; Cook, David J. ; Huschka, Todd R. ; Thompson, Jeffrey E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-23c886022ca779bc23712b212aebcac4f4e68e1c4898cbf63bc972ee3a076a2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Business and Management</topic><topic>Cardiovascular Surgical Procedures - statistics &amp; numerical data</topic><topic>Case studies</topic><topic>Clinics</topic><topic>Computer Simulation</topic><topic>Costs</topic><topic>Critical care</topic><topic>Econometrics</topic><topic>Financial analysis</topic><topic>Health Administration</topic><topic>Health care management</topic><topic>Health Informatics</topic><topic>Heart surgery</topic><topic>Hospital Bed Capacity - statistics &amp; numerical data</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Intensive care</topic><topic>Intensive Care Units - statistics &amp; numerical data</topic><topic>Management</topic><topic>Models, Statistical</topic><topic>Needs Assessment</topic><topic>Operations Research/Decision Theory</topic><topic>Patient care planning</topic><topic>Patient safety</topic><topic>Planning Techniques</topic><topic>Postoperative period</topic><topic>Quality of service</topic><topic>Recovery (Medical)</topic><topic>Resource allocation</topic><topic>Simulation</topic><topic>Studies</topic><topic>Workforce planning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marmor, Yariv N.</creatorcontrib><creatorcontrib>Rohleder, Thomas R.</creatorcontrib><creatorcontrib>Cook, David J.</creatorcontrib><creatorcontrib>Huschka, Todd R.</creatorcontrib><creatorcontrib>Thompson, Jeffrey E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>ProQuest Healthcare Administration Database</collection><collection>PML(ProQuest Medical Library)</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Health care management science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marmor, Yariv N.</au><au>Rohleder, Thomas R.</au><au>Cook, David J.</au><au>Huschka, Todd R.</au><au>Thompson, Jeffrey E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recovery bed planning in cardiovascular surgery: a simulation case study</atitle><jtitle>Health care management science</jtitle><stitle>Health Care Manag Sci</stitle><addtitle>Health Care Manag Sci</addtitle><date>2013-12-01</date><risdate>2013</risdate><volume>16</volume><issue>4</issue><spage>314</spage><epage>327</epage><pages>314-327</pages><issn>1386-9620</issn><eissn>1572-9389</eissn><abstract>Recovery beds for cardiovascular surgical patients in the intensive care unit (ICU) and progressive care unit (PCU) are costly hospital resources that require effective management. This case study reports on the development and use of a discrete-event simulation model used to predict minimum bed needs to achieve the high patient service level demanded at Mayo Clinic. In addition to bed predictions that incorporate surgery growth and new recovery protocols, the model was used to explore the effects of smoothing surgery schedules and transferring long-stay patients from the ICU. The model projected bed needs that were 30 % lower than the traditional bed-planning approach and the options explored by the practice could substantially reduce the number of beds required.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>23508521</pmid><doi>10.1007/s10729-013-9231-5</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1386-9620
ispartof Health care management science, 2013-12, Vol.16 (4), p.314-327
issn 1386-9620
1572-9389
language eng
recordid cdi_proquest_miscellaneous_1449769514
source EconLit s plnými texty; ABI/INFORM Global (ProQuest); Springer Link; BSC - Ebsco (Business Source Ultimate)
subjects Business and Management
Cardiovascular Surgical Procedures - statistics & numerical data
Case studies
Clinics
Computer Simulation
Costs
Critical care
Econometrics
Financial analysis
Health Administration
Health care management
Health Informatics
Heart surgery
Hospital Bed Capacity - statistics & numerical data
Hospitals
Humans
Intensive care
Intensive Care Units - statistics & numerical data
Management
Models, Statistical
Needs Assessment
Operations Research/Decision Theory
Patient care planning
Patient safety
Planning Techniques
Postoperative period
Quality of service
Recovery (Medical)
Resource allocation
Simulation
Studies
Workforce planning
title Recovery bed planning in cardiovascular surgery: a simulation case study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A55%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recovery%20bed%20planning%20in%20cardiovascular%20surgery:%20a%20simulation%20case%20study&rft.jtitle=Health%20care%20management%20science&rft.au=Marmor,%20Yariv%20N.&rft.date=2013-12-01&rft.volume=16&rft.issue=4&rft.spage=314&rft.epage=327&rft.pages=314-327&rft.issn=1386-9620&rft.eissn=1572-9389&rft_id=info:doi/10.1007/s10729-013-9231-5&rft_dat=%3Cproquest_cross%3E1449769514%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c436t-23c886022ca779bc23712b212aebcac4f4e68e1c4898cbf63bc972ee3a076a2b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1448959403&rft_id=info:pmid/23508521&rfr_iscdi=true