Loading…
A Technical Assessment of Pulse Wave Velocity Algorithms Applied to Non-invasive Arterial Waveforms
Non-invasive assessment of arterial stiffness through pulse wave velocity (PWV) analysis is becoming common clinical practice. However, the effects of measurement noise, temporal resolution and similarity of the two waveforms used for PWV calculation upon accuracy and variability are unknown. We stu...
Saved in:
Published in: | Annals of biomedical engineering 2013-12, Vol.41 (12), p.2617-2629 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c372t-8331a19bbb39d219b908f0cbb557932780f2fc3f7af833f0383224a62e05ada73 |
---|---|
cites | cdi_FETCH-LOGICAL-c372t-8331a19bbb39d219b908f0cbb557932780f2fc3f7af833f0383224a62e05ada73 |
container_end_page | 2629 |
container_issue | 12 |
container_start_page | 2617 |
container_title | Annals of biomedical engineering |
container_volume | 41 |
creator | Gaddum, N. R. Alastruey, J. Beerbaum, P. Chowienczyk, P. Schaeffter, T. |
description | Non-invasive assessment of arterial stiffness through pulse wave velocity (PWV) analysis is becoming common clinical practice. However, the effects of measurement noise, temporal resolution and similarity of the two waveforms used for PWV calculation upon accuracy and variability are unknown. We studied these effects upon PWV estimates given by foot-to-foot, least squared difference, and cross-correlation algorithms. We assessed accuracy using numerically generated blood pressure and flow waveforms for which the theoretical PWV was known to compare with the algorithm estimates. We assessed variability using clinical measurements in 28 human subjects. Wave shape similarity was quantified using a cross correlation-coefficient (CC
Coefficient
), which decreases with increasing distance between waveform measurements sites. Based on our results, we propose the following criteria to identify the most accurate and least variable algorithm given the noise, resolution and CC
Coefficient
of the measured waveforms. (1) Use foot-to-foot when the noise-to-signal ratio ≤10%, and/or temporal resolution ≥100 Hz. Otherwise (2) use a least squares differencing method applied to the systolic upstroke. |
doi_str_mv | 10.1007/s10439-013-0854-y |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1449770137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3120813801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-8331a19bbb39d219b908f0cbb557932780f2fc3f7af833f0383224a62e05ada73</originalsourceid><addsrcrecordid>eNp1kcFKHTEUhkNR6q3tA3RTAm7cRE-SmclkOUhrC1K7sO0yZHITjcxMrjkzwn375vZaKYKrBPL9Xw7nJ-QjhzMOoM6RQyU1Ay4ZtHXFtm_IitdKMt20zQFZAWhgjW6qI_IO8R6A81bWb8mRkC1XqmlWxHX0xru7KTo70A7RI45-mmkK9McyoKe_7aOnv_yQXJy3tBtuU47z3Yi022yG6Nd0TvR7mlicHi3GwnZ59jkW2y4ZUh7xPTkMtrg-PJ3H5OeXzzcXX9nV9eW3i-6KOanEzFopueW673up16JcNLQBXN_XtdJSqBaCCE4GZUNBA8hWClHZRnio7doqeUxO995NTg-Lx9mMEZ0fBjv5tKDhVaWVKtvaoScv0Pu05KlM95cStRB1Uyi-p1xOiNkHs8lxtHlrOJhdA2bfgClOs2vAbEvm05N56Ue_fk78W3kBxB7A8jTd-vzf169a_wCu2JC_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1449252256</pqid></control><display><type>article</type><title>A Technical Assessment of Pulse Wave Velocity Algorithms Applied to Non-invasive Arterial Waveforms</title><source>Springer Nature</source><creator>Gaddum, N. R. ; Alastruey, J. ; Beerbaum, P. ; Chowienczyk, P. ; Schaeffter, T.</creator><creatorcontrib>Gaddum, N. R. ; Alastruey, J. ; Beerbaum, P. ; Chowienczyk, P. ; Schaeffter, T.</creatorcontrib><description>Non-invasive assessment of arterial stiffness through pulse wave velocity (PWV) analysis is becoming common clinical practice. However, the effects of measurement noise, temporal resolution and similarity of the two waveforms used for PWV calculation upon accuracy and variability are unknown. We studied these effects upon PWV estimates given by foot-to-foot, least squared difference, and cross-correlation algorithms. We assessed accuracy using numerically generated blood pressure and flow waveforms for which the theoretical PWV was known to compare with the algorithm estimates. We assessed variability using clinical measurements in 28 human subjects. Wave shape similarity was quantified using a cross correlation-coefficient (CC
Coefficient
), which decreases with increasing distance between waveform measurements sites. Based on our results, we propose the following criteria to identify the most accurate and least variable algorithm given the noise, resolution and CC
Coefficient
of the measured waveforms. (1) Use foot-to-foot when the noise-to-signal ratio ≤10%, and/or temporal resolution ≥100 Hz. Otherwise (2) use a least squares differencing method applied to the systolic upstroke.</description><identifier>ISSN: 0090-6964</identifier><identifier>EISSN: 1573-9686</identifier><identifier>DOI: 10.1007/s10439-013-0854-y</identifier><identifier>PMID: 23817766</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algorithms ; Arteries - physiology ; Biochemistry ; Biological and Medical Physics ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Biophysics ; Blood Flow Velocity ; Blood pressure ; Classical Mechanics ; Humans ; Hypertension - physiopathology ; Pulse Wave Analysis ; Vascular Stiffness ; Wave velocity</subject><ispartof>Annals of biomedical engineering, 2013-12, Vol.41 (12), p.2617-2629</ispartof><rights>Biomedical Engineering Society 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-8331a19bbb39d219b908f0cbb557932780f2fc3f7af833f0383224a62e05ada73</citedby><cites>FETCH-LOGICAL-c372t-8331a19bbb39d219b908f0cbb557932780f2fc3f7af833f0383224a62e05ada73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23817766$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gaddum, N. R.</creatorcontrib><creatorcontrib>Alastruey, J.</creatorcontrib><creatorcontrib>Beerbaum, P.</creatorcontrib><creatorcontrib>Chowienczyk, P.</creatorcontrib><creatorcontrib>Schaeffter, T.</creatorcontrib><title>A Technical Assessment of Pulse Wave Velocity Algorithms Applied to Non-invasive Arterial Waveforms</title><title>Annals of biomedical engineering</title><addtitle>Ann Biomed Eng</addtitle><addtitle>Ann Biomed Eng</addtitle><description>Non-invasive assessment of arterial stiffness through pulse wave velocity (PWV) analysis is becoming common clinical practice. However, the effects of measurement noise, temporal resolution and similarity of the two waveforms used for PWV calculation upon accuracy and variability are unknown. We studied these effects upon PWV estimates given by foot-to-foot, least squared difference, and cross-correlation algorithms. We assessed accuracy using numerically generated blood pressure and flow waveforms for which the theoretical PWV was known to compare with the algorithm estimates. We assessed variability using clinical measurements in 28 human subjects. Wave shape similarity was quantified using a cross correlation-coefficient (CC
Coefficient
), which decreases with increasing distance between waveform measurements sites. Based on our results, we propose the following criteria to identify the most accurate and least variable algorithm given the noise, resolution and CC
Coefficient
of the measured waveforms. (1) Use foot-to-foot when the noise-to-signal ratio ≤10%, and/or temporal resolution ≥100 Hz. Otherwise (2) use a least squares differencing method applied to the systolic upstroke.</description><subject>Algorithms</subject><subject>Arteries - physiology</subject><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Biophysics</subject><subject>Blood Flow Velocity</subject><subject>Blood pressure</subject><subject>Classical Mechanics</subject><subject>Humans</subject><subject>Hypertension - physiopathology</subject><subject>Pulse Wave Analysis</subject><subject>Vascular Stiffness</subject><subject>Wave velocity</subject><issn>0090-6964</issn><issn>1573-9686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kcFKHTEUhkNR6q3tA3RTAm7cRE-SmclkOUhrC1K7sO0yZHITjcxMrjkzwn375vZaKYKrBPL9Xw7nJ-QjhzMOoM6RQyU1Ay4ZtHXFtm_IitdKMt20zQFZAWhgjW6qI_IO8R6A81bWb8mRkC1XqmlWxHX0xru7KTo70A7RI45-mmkK9McyoKe_7aOnv_yQXJy3tBtuU47z3Yi022yG6Nd0TvR7mlicHi3GwnZ59jkW2y4ZUh7xPTkMtrg-PJ3H5OeXzzcXX9nV9eW3i-6KOanEzFopueW673up16JcNLQBXN_XtdJSqBaCCE4GZUNBA8hWClHZRnio7doqeUxO995NTg-Lx9mMEZ0fBjv5tKDhVaWVKtvaoScv0Pu05KlM95cStRB1Uyi-p1xOiNkHs8lxtHlrOJhdA2bfgClOs2vAbEvm05N56Ue_fk78W3kBxB7A8jTd-vzf169a_wCu2JC_</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Gaddum, N. R.</creator><creator>Alastruey, J.</creator><creator>Beerbaum, P.</creator><creator>Chowienczyk, P.</creator><creator>Schaeffter, T.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope></search><sort><creationdate>20131201</creationdate><title>A Technical Assessment of Pulse Wave Velocity Algorithms Applied to Non-invasive Arterial Waveforms</title><author>Gaddum, N. R. ; Alastruey, J. ; Beerbaum, P. ; Chowienczyk, P. ; Schaeffter, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-8331a19bbb39d219b908f0cbb557932780f2fc3f7af833f0383224a62e05ada73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Arteries - physiology</topic><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Biophysics</topic><topic>Blood Flow Velocity</topic><topic>Blood pressure</topic><topic>Classical Mechanics</topic><topic>Humans</topic><topic>Hypertension - physiopathology</topic><topic>Pulse Wave Analysis</topic><topic>Vascular Stiffness</topic><topic>Wave velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaddum, N. R.</creatorcontrib><creatorcontrib>Alastruey, J.</creatorcontrib><creatorcontrib>Beerbaum, P.</creatorcontrib><creatorcontrib>Chowienczyk, P.</creatorcontrib><creatorcontrib>Schaeffter, T.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Annals of biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaddum, N. R.</au><au>Alastruey, J.</au><au>Beerbaum, P.</au><au>Chowienczyk, P.</au><au>Schaeffter, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Technical Assessment of Pulse Wave Velocity Algorithms Applied to Non-invasive Arterial Waveforms</atitle><jtitle>Annals of biomedical engineering</jtitle><stitle>Ann Biomed Eng</stitle><addtitle>Ann Biomed Eng</addtitle><date>2013-12-01</date><risdate>2013</risdate><volume>41</volume><issue>12</issue><spage>2617</spage><epage>2629</epage><pages>2617-2629</pages><issn>0090-6964</issn><eissn>1573-9686</eissn><abstract>Non-invasive assessment of arterial stiffness through pulse wave velocity (PWV) analysis is becoming common clinical practice. However, the effects of measurement noise, temporal resolution and similarity of the two waveforms used for PWV calculation upon accuracy and variability are unknown. We studied these effects upon PWV estimates given by foot-to-foot, least squared difference, and cross-correlation algorithms. We assessed accuracy using numerically generated blood pressure and flow waveforms for which the theoretical PWV was known to compare with the algorithm estimates. We assessed variability using clinical measurements in 28 human subjects. Wave shape similarity was quantified using a cross correlation-coefficient (CC
Coefficient
), which decreases with increasing distance between waveform measurements sites. Based on our results, we propose the following criteria to identify the most accurate and least variable algorithm given the noise, resolution and CC
Coefficient
of the measured waveforms. (1) Use foot-to-foot when the noise-to-signal ratio ≤10%, and/or temporal resolution ≥100 Hz. Otherwise (2) use a least squares differencing method applied to the systolic upstroke.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>23817766</pmid><doi>10.1007/s10439-013-0854-y</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-6964 |
ispartof | Annals of biomedical engineering, 2013-12, Vol.41 (12), p.2617-2629 |
issn | 0090-6964 1573-9686 |
language | eng |
recordid | cdi_proquest_miscellaneous_1449770137 |
source | Springer Nature |
subjects | Algorithms Arteries - physiology Biochemistry Biological and Medical Physics Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Biophysics Blood Flow Velocity Blood pressure Classical Mechanics Humans Hypertension - physiopathology Pulse Wave Analysis Vascular Stiffness Wave velocity |
title | A Technical Assessment of Pulse Wave Velocity Algorithms Applied to Non-invasive Arterial Waveforms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A22%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Technical%20Assessment%20of%20Pulse%20Wave%20Velocity%20Algorithms%20Applied%20to%20Non-invasive%20Arterial%20Waveforms&rft.jtitle=Annals%20of%20biomedical%20engineering&rft.au=Gaddum,%20N.%20R.&rft.date=2013-12-01&rft.volume=41&rft.issue=12&rft.spage=2617&rft.epage=2629&rft.pages=2617-2629&rft.issn=0090-6964&rft.eissn=1573-9686&rft_id=info:doi/10.1007/s10439-013-0854-y&rft_dat=%3Cproquest_cross%3E3120813801%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-8331a19bbb39d219b908f0cbb557932780f2fc3f7af833f0383224a62e05ada73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1449252256&rft_id=info:pmid/23817766&rfr_iscdi=true |