Loading…
A semisynthetic taxane Yg-3-46a effectively evades P-glycoprotein and β-III tubulin mediated tumor drug resistance in vitro
Abstract Tumor resistance, especially that mediated by P-glycoprotein (P-gp) and β-III tubulin, is a major obstacle to the efficacy of most microtubule-targeting anticancer drugs in clinics. A novel semisynthetic taxane, 2-debenzoyl-2-(3-azidobenzyl)-10-propionyldocetaxel (Yg-3-46a) was shown to be...
Saved in:
Published in: | Cancer letters 2013-12, Vol.341 (2), p.214-223 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Tumor resistance, especially that mediated by P-glycoprotein (P-gp) and β-III tubulin, is a major obstacle to the efficacy of most microtubule-targeting anticancer drugs in clinics. A novel semisynthetic taxane, 2-debenzoyl-2-(3-azidobenzyl)-10-propionyldocetaxel (Yg-3-46a) was shown to be highly cytotoxic to breast cancer cell lines MCF-7 and MCF/ADR which overexpressed P-gp via long term culture with doxorubicin, and cervical cancer cell lines Hela and Hela/βIII which overexpressed βIII-tubulin via stable transfection with TUBB3 gene. siRNA transfection experiments also confirmed that Yg-3-46a can circumvent P-gp and β-III tubulin mediated drug resistance. In addition, its cytotoxicity was lower than that of paclitaxel in the human mammary cell line HBL-100 and the human telomerase-immortalized retinal pigment epithelium cell line (hTERT-RPE1), suggesting a better safety margin for this compound in vivo. It exhibited more potent microtubule polymerization ability than paclitaxel in vitro, and also induced G2 /M phase arrest in MCF-7/ADR cells. Moreover, it was found to induce apoptosis in MCF-7/ADR cells through the caspase-dependent death-receptor pathway by enhancing levels of Fas and FasL, and activating caspase-8 and 3. Yg-3-46a was found to be a poorer substrate of P-gp compared to paclitaxel, in both binding and ATPase experiments, which is likely responsible for its ability to circumvent P-gp mediated multidrug resistance (MDR). All of these results indicate that Yg-3-46a is a novel microtubule-stabilizing agent that has the potential to evade drug resistance mediated by P-gp and β-III tubulin overexpression. |
---|---|
ISSN: | 0304-3835 1872-7980 |
DOI: | 10.1016/j.canlet.2013.08.010 |