Loading…

A semisynthetic taxane Yg-3-46a effectively evades P-glycoprotein and β-III tubulin mediated tumor drug resistance in vitro

Abstract Tumor resistance, especially that mediated by P-glycoprotein (P-gp) and β-III tubulin, is a major obstacle to the efficacy of most microtubule-targeting anticancer drugs in clinics. A novel semisynthetic taxane, 2-debenzoyl-2-(3-azidobenzyl)-10-propionyldocetaxel (Yg-3-46a) was shown to be...

Full description

Saved in:
Bibliographic Details
Published in:Cancer letters 2013-12, Vol.341 (2), p.214-223
Main Authors: Cai, Pei, Lu, Peihua, Sharom, Frances J, Fang, Wei-Shuo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Tumor resistance, especially that mediated by P-glycoprotein (P-gp) and β-III tubulin, is a major obstacle to the efficacy of most microtubule-targeting anticancer drugs in clinics. A novel semisynthetic taxane, 2-debenzoyl-2-(3-azidobenzyl)-10-propionyldocetaxel (Yg-3-46a) was shown to be highly cytotoxic to breast cancer cell lines MCF-7 and MCF/ADR which overexpressed P-gp via long term culture with doxorubicin, and cervical cancer cell lines Hela and Hela/βIII which overexpressed βIII-tubulin via stable transfection with TUBB3 gene. siRNA transfection experiments also confirmed that Yg-3-46a can circumvent P-gp and β-III tubulin mediated drug resistance. In addition, its cytotoxicity was lower than that of paclitaxel in the human mammary cell line HBL-100 and the human telomerase-immortalized retinal pigment epithelium cell line (hTERT-RPE1), suggesting a better safety margin for this compound in vivo. It exhibited more potent microtubule polymerization ability than paclitaxel in vitro, and also induced G2 /M phase arrest in MCF-7/ADR cells. Moreover, it was found to induce apoptosis in MCF-7/ADR cells through the caspase-dependent death-receptor pathway by enhancing levels of Fas and FasL, and activating caspase-8 and 3. Yg-3-46a was found to be a poorer substrate of P-gp compared to paclitaxel, in both binding and ATPase experiments, which is likely responsible for its ability to circumvent P-gp mediated multidrug resistance (MDR). All of these results indicate that Yg-3-46a is a novel microtubule-stabilizing agent that has the potential to evade drug resistance mediated by P-gp and β-III tubulin overexpression.
ISSN:0304-3835
1872-7980
DOI:10.1016/j.canlet.2013.08.010