Loading…

Sorption and diffusion of carbon dioxide and nitrogen in poly(methyl methacrylate)

Molecular dynamics simulations are performed to determine the solubility and diffusion coefficient of carbon dioxide and nitrogen in poly(methyl methacrylate) (PMMA). The solubilities of CO2 in the polymer are calculated employing our grand canonical ensemble simulation method, fixing the target exc...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2013-09, Vol.139 (12), p.124902-124902
Main Authors: Eslami, Hossein, Kesik, Melis, Karimi-Varzaneh, Hossein Ali, Müller-Plathe, Florian
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Molecular dynamics simulations are performed to determine the solubility and diffusion coefficient of carbon dioxide and nitrogen in poly(methyl methacrylate) (PMMA). The solubilities of CO2 in the polymer are calculated employing our grand canonical ensemble simulation method, fixing the target excess chemical potential of CO2 in the polymer and varying the number of CO2 molecules in the polymer matrix till establishing equilibrium. It is shown that the calculated sorption isotherms of CO2 in PMMA, employing this method well agrees with experiment. Our results on the diffusion coefficients of CO2 and N2 in PMMA are shown to obey a common hopping mechanism. It is shown that the higher solubility of CO2 than that of N2 is a consequence of more attractive interactions between the carbonyl group of polymer and the sorbent. While the residence time of CO2 beside the carbonyl group of polymer is about three times higher than that of N2, the diffusion coefficient of CO2 in PMMA is higher than that of N2. The higher diffusion coefficient of CO2, compared to N2, in PMMA is shown to be due to the higher (≈3 times) swelling of polymer upon CO2 uptake.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.4821585