Loading…
Variation at the vernalisation genes Vrn-H1 and Vrn-H2 determines growth and yield stability in barley (Hordeum vulgare) grown under dryland conditions in Syria
KEY MESSAGE : Spring growth in barley controlled by natural variation at Vrn-H1 and Vrn-H2 improved yield stability in marginal Syrian environments. The objective of the present study was to identify QTL influencing agronomic performance in rain-fed Mediterranean environments in a recombinant inbred...
Saved in:
Published in: | Theoretical and applied genetics 2013-11, Vol.126 (11), p.2803-2824 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c573t-771960c73bb11f4b075ce7d88c53d60d8f4725e7a2c4504100ea3c8276db779d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c573t-771960c73bb11f4b075ce7d88c53d60d8f4725e7a2c4504100ea3c8276db779d3 |
container_end_page | 2824 |
container_issue | 11 |
container_start_page | 2803 |
container_title | Theoretical and applied genetics |
container_volume | 126 |
creator | Rollins, Jarod A Drosse, B Mulki, M. A Grando, S Baum, M Singh, M Ceccarelli, S von Korff, M |
description | KEY MESSAGE : Spring growth in barley controlled by natural variation at Vrn-H1 and Vrn-H2 improved yield stability in marginal Syrian environments. The objective of the present study was to identify QTL influencing agronomic performance in rain-fed Mediterranean environments in a recombinant inbred line (RIL) population, ARKE derived from the Syrian barley landrace, Arta and the Australian feed cultivar, Keel. The population was field tested for agronomic performance at two locations in Syria for 4 years with two sowing dates, in autumn and winter. Genotypic variability in yield of the RIL population was mainly affected by year-to-year variation presumably caused by inter-annual differences in rainfall distribution. The spring growth habit and early flowering inherited from the Australian cultivar Keel increased plant height and biomass and improved yield stability in Syrian environments. QTL for yield and biomass coincided with the map location of flowering time genes, in particular the vernalisation genes Vrn-H1 and Vrn-H2. In marginal environments with terminal drought, the Vrn-H1 allele inherited from Keel improved final biomass and yield. Under changing climate conditions, such as shorter winters, reduced rainfall, and early summer drought, spring barley might thus outperform the traditional vernalisation-sensitive Syrian landraces. We present the ARKE population as a valuable genetic resource to further elucidate the genetics of drought adaptation of barley in the field. |
doi_str_mv | 10.1007/s00122-013-2173-y |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1458526036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A352232049</galeid><sourcerecordid>A352232049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c573t-771960c73bb11f4b075ce7d88c53d60d8f4725e7a2c4504100ea3c8276db779d3</originalsourceid><addsrcrecordid>eNqNkstu1TAQhiMEoqXwAGzAUjftIsXXOFlWFXAqVULi0G4tJ56krhKn2E4hb8Oj4jTlchBCyAtbM98_nhn9WfaS4BOCsXwTMCaU5piwnBLJ8vlRtk84ozmlnD7O9jHmOBdS0L3sWQg3GGMqMHua7VFWkRIXYj_7dqW91dGODumI4jWgO_BO9zaswQ4cBHTlXb4hSDuzPikyEMEPdkl2fvwSr--Ts4XeoBB1bXsbZ2QdqrXvYUZHm9EbmAZ0N_Wd9nB8L3NocgY8Mn7uF30zOmOXf8Mi3c6ptefZk1b3AV483AfZ5bu3n842-cWH9-dnpxd5IySLuZSkKnAjWV0T0vIaS9GANGXZCGYKbMqWSypAatpwgXlaH2jWlFQWppayMuwgO1rr3vrx8wQhqsGGBvrUF4xTUISLUtACs-I_UC4qkjYtEnr4B3ozTst-V4qUBanIL6rTPSjr2jF63SxF1SkTlDKKeZWok79Q6RgYbNoctDbFdwTHO4LERPgaOz2FoM63H3dZsrKNH0Pw0KpbbwftZ0WwWsymVrOpZDa1mE3NSfPqYbipHsD8VPxwVwLoCoSUch3436b_R9XXq6jVo9Kdt0FdbikmPNmXFVhw9h1iOeYT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1445186191</pqid></control><display><type>article</type><title>Variation at the vernalisation genes Vrn-H1 and Vrn-H2 determines growth and yield stability in barley (Hordeum vulgare) grown under dryland conditions in Syria</title><source>Springer Nature</source><creator>Rollins, Jarod A ; Drosse, B ; Mulki, M. A ; Grando, S ; Baum, M ; Singh, M ; Ceccarelli, S ; von Korff, M</creator><creatorcontrib>Rollins, Jarod A ; Drosse, B ; Mulki, M. A ; Grando, S ; Baum, M ; Singh, M ; Ceccarelli, S ; von Korff, M</creatorcontrib><description>KEY MESSAGE : Spring growth in barley controlled by natural variation at Vrn-H1 and Vrn-H2 improved yield stability in marginal Syrian environments. The objective of the present study was to identify QTL influencing agronomic performance in rain-fed Mediterranean environments in a recombinant inbred line (RIL) population, ARKE derived from the Syrian barley landrace, Arta and the Australian feed cultivar, Keel. The population was field tested for agronomic performance at two locations in Syria for 4 years with two sowing dates, in autumn and winter. Genotypic variability in yield of the RIL population was mainly affected by year-to-year variation presumably caused by inter-annual differences in rainfall distribution. The spring growth habit and early flowering inherited from the Australian cultivar Keel increased plant height and biomass and improved yield stability in Syrian environments. QTL for yield and biomass coincided with the map location of flowering time genes, in particular the vernalisation genes Vrn-H1 and Vrn-H2. In marginal environments with terminal drought, the Vrn-H1 allele inherited from Keel improved final biomass and yield. Under changing climate conditions, such as shorter winters, reduced rainfall, and early summer drought, spring barley might thus outperform the traditional vernalisation-sensitive Syrian landraces. We present the ARKE population as a valuable genetic resource to further elucidate the genetics of drought adaptation of barley in the field.</description><identifier>ISSN: 0040-5752</identifier><identifier>EISSN: 1432-2242</identifier><identifier>DOI: 10.1007/s00122-013-2173-y</identifier><identifier>PMID: 23918065</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Abiotic stress ; Adaptation ; Agricultural production ; Agricultural research ; Agriculture ; agronomic traits ; arid lands ; autumn ; Barley ; Biochemistry ; Biomass ; Biomedical and Life Sciences ; Biotechnology ; Cultivars ; Drought ; Ecosystem ; flowering ; Flowers - genetics ; Flowers - physiology ; Genes ; Genes, Plant - genetics ; Genetic aspects ; Genetic Markers ; Genetic Variation ; Germplasm ; Growth ; Growth (Plants) ; growth habit ; Hordeum - genetics ; Hordeum - growth & development ; Hordeum vulgare ; inbred lines ; inheritance (genetics) ; landraces ; Life Sciences ; Mediterranean climate ; Original Paper ; Phenotype ; Physiological aspects ; Plant Biochemistry ; Plant Breeding/Biotechnology ; Plant Genetics and Genomics ; Quantitative genetics ; quantitative trait loci ; Quantitative Trait Loci - genetics ; Quantitative Trait, Heritable ; Rain ; spring barley ; summer ; Syria ; vernalization ; winter</subject><ispartof>Theoretical and applied genetics, 2013-11, Vol.126 (11), p.2803-2824</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>COPYRIGHT 2013 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c573t-771960c73bb11f4b075ce7d88c53d60d8f4725e7a2c4504100ea3c8276db779d3</citedby><cites>FETCH-LOGICAL-c573t-771960c73bb11f4b075ce7d88c53d60d8f4725e7a2c4504100ea3c8276db779d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23918065$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rollins, Jarod A</creatorcontrib><creatorcontrib>Drosse, B</creatorcontrib><creatorcontrib>Mulki, M. A</creatorcontrib><creatorcontrib>Grando, S</creatorcontrib><creatorcontrib>Baum, M</creatorcontrib><creatorcontrib>Singh, M</creatorcontrib><creatorcontrib>Ceccarelli, S</creatorcontrib><creatorcontrib>von Korff, M</creatorcontrib><title>Variation at the vernalisation genes Vrn-H1 and Vrn-H2 determines growth and yield stability in barley (Hordeum vulgare) grown under dryland conditions in Syria</title><title>Theoretical and applied genetics</title><addtitle>Theor Appl Genet</addtitle><addtitle>Theor Appl Genet</addtitle><description>KEY MESSAGE : Spring growth in barley controlled by natural variation at Vrn-H1 and Vrn-H2 improved yield stability in marginal Syrian environments. The objective of the present study was to identify QTL influencing agronomic performance in rain-fed Mediterranean environments in a recombinant inbred line (RIL) population, ARKE derived from the Syrian barley landrace, Arta and the Australian feed cultivar, Keel. The population was field tested for agronomic performance at two locations in Syria for 4 years with two sowing dates, in autumn and winter. Genotypic variability in yield of the RIL population was mainly affected by year-to-year variation presumably caused by inter-annual differences in rainfall distribution. The spring growth habit and early flowering inherited from the Australian cultivar Keel increased plant height and biomass and improved yield stability in Syrian environments. QTL for yield and biomass coincided with the map location of flowering time genes, in particular the vernalisation genes Vrn-H1 and Vrn-H2. In marginal environments with terminal drought, the Vrn-H1 allele inherited from Keel improved final biomass and yield. Under changing climate conditions, such as shorter winters, reduced rainfall, and early summer drought, spring barley might thus outperform the traditional vernalisation-sensitive Syrian landraces. We present the ARKE population as a valuable genetic resource to further elucidate the genetics of drought adaptation of barley in the field.</description><subject>Abiotic stress</subject><subject>Adaptation</subject><subject>Agricultural production</subject><subject>Agricultural research</subject><subject>Agriculture</subject><subject>agronomic traits</subject><subject>arid lands</subject><subject>autumn</subject><subject>Barley</subject><subject>Biochemistry</subject><subject>Biomass</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Cultivars</subject><subject>Drought</subject><subject>Ecosystem</subject><subject>flowering</subject><subject>Flowers - genetics</subject><subject>Flowers - physiology</subject><subject>Genes</subject><subject>Genes, Plant - genetics</subject><subject>Genetic aspects</subject><subject>Genetic Markers</subject><subject>Genetic Variation</subject><subject>Germplasm</subject><subject>Growth</subject><subject>Growth (Plants)</subject><subject>growth habit</subject><subject>Hordeum - genetics</subject><subject>Hordeum - growth & development</subject><subject>Hordeum vulgare</subject><subject>inbred lines</subject><subject>inheritance (genetics)</subject><subject>landraces</subject><subject>Life Sciences</subject><subject>Mediterranean climate</subject><subject>Original Paper</subject><subject>Phenotype</subject><subject>Physiological aspects</subject><subject>Plant Biochemistry</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Genetics and Genomics</subject><subject>Quantitative genetics</subject><subject>quantitative trait loci</subject><subject>Quantitative Trait Loci - genetics</subject><subject>Quantitative Trait, Heritable</subject><subject>Rain</subject><subject>spring barley</subject><subject>summer</subject><subject>Syria</subject><subject>vernalization</subject><subject>winter</subject><issn>0040-5752</issn><issn>1432-2242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkstu1TAQhiMEoqXwAGzAUjftIsXXOFlWFXAqVULi0G4tJ56krhKn2E4hb8Oj4jTlchBCyAtbM98_nhn9WfaS4BOCsXwTMCaU5piwnBLJ8vlRtk84ozmlnD7O9jHmOBdS0L3sWQg3GGMqMHua7VFWkRIXYj_7dqW91dGODumI4jWgO_BO9zaswQ4cBHTlXb4hSDuzPikyEMEPdkl2fvwSr--Ts4XeoBB1bXsbZ2QdqrXvYUZHm9EbmAZ0N_Wd9nB8L3NocgY8Mn7uF30zOmOXf8Mi3c6ptefZk1b3AV483AfZ5bu3n842-cWH9-dnpxd5IySLuZSkKnAjWV0T0vIaS9GANGXZCGYKbMqWSypAatpwgXlaH2jWlFQWppayMuwgO1rr3vrx8wQhqsGGBvrUF4xTUISLUtACs-I_UC4qkjYtEnr4B3ozTst-V4qUBanIL6rTPSjr2jF63SxF1SkTlDKKeZWok79Q6RgYbNoctDbFdwTHO4LERPgaOz2FoM63H3dZsrKNH0Pw0KpbbwftZ0WwWsymVrOpZDa1mE3NSfPqYbipHsD8VPxwVwLoCoSUch3436b_R9XXq6jVo9Kdt0FdbikmPNmXFVhw9h1iOeYT</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Rollins, Jarod A</creator><creator>Drosse, B</creator><creator>Mulki, M. A</creator><creator>Grando, S</creator><creator>Baum, M</creator><creator>Singh, M</creator><creator>Ceccarelli, S</creator><creator>von Korff, M</creator><general>Springer-Verlag</general><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20131101</creationdate><title>Variation at the vernalisation genes Vrn-H1 and Vrn-H2 determines growth and yield stability in barley (Hordeum vulgare) grown under dryland conditions in Syria</title><author>Rollins, Jarod A ; Drosse, B ; Mulki, M. A ; Grando, S ; Baum, M ; Singh, M ; Ceccarelli, S ; von Korff, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c573t-771960c73bb11f4b075ce7d88c53d60d8f4725e7a2c4504100ea3c8276db779d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Abiotic stress</topic><topic>Adaptation</topic><topic>Agricultural production</topic><topic>Agricultural research</topic><topic>Agriculture</topic><topic>agronomic traits</topic><topic>arid lands</topic><topic>autumn</topic><topic>Barley</topic><topic>Biochemistry</topic><topic>Biomass</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Cultivars</topic><topic>Drought</topic><topic>Ecosystem</topic><topic>flowering</topic><topic>Flowers - genetics</topic><topic>Flowers - physiology</topic><topic>Genes</topic><topic>Genes, Plant - genetics</topic><topic>Genetic aspects</topic><topic>Genetic Markers</topic><topic>Genetic Variation</topic><topic>Germplasm</topic><topic>Growth</topic><topic>Growth (Plants)</topic><topic>growth habit</topic><topic>Hordeum - genetics</topic><topic>Hordeum - growth & development</topic><topic>Hordeum vulgare</topic><topic>inbred lines</topic><topic>inheritance (genetics)</topic><topic>landraces</topic><topic>Life Sciences</topic><topic>Mediterranean climate</topic><topic>Original Paper</topic><topic>Phenotype</topic><topic>Physiological aspects</topic><topic>Plant Biochemistry</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Genetics and Genomics</topic><topic>Quantitative genetics</topic><topic>quantitative trait loci</topic><topic>Quantitative Trait Loci - genetics</topic><topic>Quantitative Trait, Heritable</topic><topic>Rain</topic><topic>spring barley</topic><topic>summer</topic><topic>Syria</topic><topic>vernalization</topic><topic>winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rollins, Jarod A</creatorcontrib><creatorcontrib>Drosse, B</creatorcontrib><creatorcontrib>Mulki, M. A</creatorcontrib><creatorcontrib>Grando, S</creatorcontrib><creatorcontrib>Baum, M</creatorcontrib><creatorcontrib>Singh, M</creatorcontrib><creatorcontrib>Ceccarelli, S</creatorcontrib><creatorcontrib>von Korff, M</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Theoretical and applied genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rollins, Jarod A</au><au>Drosse, B</au><au>Mulki, M. A</au><au>Grando, S</au><au>Baum, M</au><au>Singh, M</au><au>Ceccarelli, S</au><au>von Korff, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variation at the vernalisation genes Vrn-H1 and Vrn-H2 determines growth and yield stability in barley (Hordeum vulgare) grown under dryland conditions in Syria</atitle><jtitle>Theoretical and applied genetics</jtitle><stitle>Theor Appl Genet</stitle><addtitle>Theor Appl Genet</addtitle><date>2013-11-01</date><risdate>2013</risdate><volume>126</volume><issue>11</issue><spage>2803</spage><epage>2824</epage><pages>2803-2824</pages><issn>0040-5752</issn><eissn>1432-2242</eissn><abstract>KEY MESSAGE : Spring growth in barley controlled by natural variation at Vrn-H1 and Vrn-H2 improved yield stability in marginal Syrian environments. The objective of the present study was to identify QTL influencing agronomic performance in rain-fed Mediterranean environments in a recombinant inbred line (RIL) population, ARKE derived from the Syrian barley landrace, Arta and the Australian feed cultivar, Keel. The population was field tested for agronomic performance at two locations in Syria for 4 years with two sowing dates, in autumn and winter. Genotypic variability in yield of the RIL population was mainly affected by year-to-year variation presumably caused by inter-annual differences in rainfall distribution. The spring growth habit and early flowering inherited from the Australian cultivar Keel increased plant height and biomass and improved yield stability in Syrian environments. QTL for yield and biomass coincided with the map location of flowering time genes, in particular the vernalisation genes Vrn-H1 and Vrn-H2. In marginal environments with terminal drought, the Vrn-H1 allele inherited from Keel improved final biomass and yield. Under changing climate conditions, such as shorter winters, reduced rainfall, and early summer drought, spring barley might thus outperform the traditional vernalisation-sensitive Syrian landraces. We present the ARKE population as a valuable genetic resource to further elucidate the genetics of drought adaptation of barley in the field.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>23918065</pmid><doi>10.1007/s00122-013-2173-y</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-5752 |
ispartof | Theoretical and applied genetics, 2013-11, Vol.126 (11), p.2803-2824 |
issn | 0040-5752 1432-2242 |
language | eng |
recordid | cdi_proquest_miscellaneous_1458526036 |
source | Springer Nature |
subjects | Abiotic stress Adaptation Agricultural production Agricultural research Agriculture agronomic traits arid lands autumn Barley Biochemistry Biomass Biomedical and Life Sciences Biotechnology Cultivars Drought Ecosystem flowering Flowers - genetics Flowers - physiology Genes Genes, Plant - genetics Genetic aspects Genetic Markers Genetic Variation Germplasm Growth Growth (Plants) growth habit Hordeum - genetics Hordeum - growth & development Hordeum vulgare inbred lines inheritance (genetics) landraces Life Sciences Mediterranean climate Original Paper Phenotype Physiological aspects Plant Biochemistry Plant Breeding/Biotechnology Plant Genetics and Genomics Quantitative genetics quantitative trait loci Quantitative Trait Loci - genetics Quantitative Trait, Heritable Rain spring barley summer Syria vernalization winter |
title | Variation at the vernalisation genes Vrn-H1 and Vrn-H2 determines growth and yield stability in barley (Hordeum vulgare) grown under dryland conditions in Syria |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A07%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variation%20at%20the%20vernalisation%20genes%20Vrn-H1%20and%20Vrn-H2%20determines%20growth%20and%20yield%20stability%20in%20barley%20(Hordeum%20vulgare)%20grown%20under%20dryland%20conditions%20in%20Syria&rft.jtitle=Theoretical%20and%20applied%20genetics&rft.au=Rollins,%20Jarod%20A&rft.date=2013-11-01&rft.volume=126&rft.issue=11&rft.spage=2803&rft.epage=2824&rft.pages=2803-2824&rft.issn=0040-5752&rft.eissn=1432-2242&rft_id=info:doi/10.1007/s00122-013-2173-y&rft_dat=%3Cgale_proqu%3EA352232049%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c573t-771960c73bb11f4b075ce7d88c53d60d8f4725e7a2c4504100ea3c8276db779d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1445186191&rft_id=info:pmid/23918065&rft_galeid=A352232049&rfr_iscdi=true |