Loading…
Carotenoid and chlorophyll biosynthesis in isolated plastids from mustard seedling cotyledons (Sinapis alba L.) during etioplast-chloroplast conversion
Etioplasts and etiochloroplasts, isolated from seedlings of white mustard (Sinapis alba L.) grown in continuous far-red light, and chloroplasts isolated from cotyledons and primary leaves of white-light-grown seedlings exhibit high prenyl-lipid-forming activities. Only the etioplasts and etiochlorop...
Saved in:
Published in: | Planta 1987, Vol.170 (1), p.121-129 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Etioplasts and etiochloroplasts, isolated from seedlings of white mustard (Sinapis alba L.) grown in continuous far-red light, and chloroplasts isolated from cotyledons and primary leaves of white-light-grown seedlings exhibit high prenyl-lipid-forming activities. Only the etioplasts and etiochloroplasts, and to a much lesser extent chloroplasts from cotyledons are capable of forming carotenes from isopentenyl diphosphate as substrate, whereas in chloroplasts from primary leaves no such activities could be detected. By subfractionation experiments, it could be demonstrated that the phytoene-synthase complex in etioplasts and etiochloroplasts is present in a soluble form in the stroma, whereas the subsequent enzymes, i.e. the dehydrogenase, cis-trans isomerase and cyclase are bound to both membrane fractions, the prolamellar bodies/prothylakoids and the envelopes. In good agreement with previous results using isolated chromoplasts and chloroplasts, it is concluded that the phytoene-synthase complex may change its topology from a peripheral membrane protein in non-green plastids to a tightly membrane-associated protein in chloroplasts. This change is apparently paralleled by altered functional properties which render the complex undetectable in isolated chloroplasts. Further experiments concerning the reduction of chlorophyll a containing a geranylgeranyl side chain to chlorophyll a indicate that the light-induced etioplast-chloroplast conversion is accompanied by a certain reorganization of the polyprenoid-forming enzymatic equipment. |
---|---|
ISSN: | 0032-0935 1432-2048 |
DOI: | 10.1007/BF00392388 |