Loading…
Imputing missing yield trial data
The Additive Main effects and Multiplicative Interaction (AMMI) statistical model has been demonstrated effective for understanding genotype-environment interactions in yields, estimating yields more accurately, selecting superior genotypes more reliably, and allowing more flexible and efficient exp...
Saved in:
Published in: | Theoretical and applied genetics 1990-06, Vol.79 (6), p.753-761 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c380t-d9506736708ad6166bc67c2cb7044913adf26ed5d52f7a352a6dc8b43408e66a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c380t-d9506736708ad6166bc67c2cb7044913adf26ed5d52f7a352a6dc8b43408e66a3 |
container_end_page | 761 |
container_issue | 6 |
container_start_page | 753 |
container_title | Theoretical and applied genetics |
container_volume | 79 |
creator | Gauch, H.G. Jr Zobel, R.W |
description | The Additive Main effects and Multiplicative Interaction (AMMI) statistical model has been demonstrated effective for understanding genotype-environment interactions in yields, estimating yields more accurately, selecting superior genotypes more reliably, and allowing more flexible and efficient experimental designs. However, AMMI had required data for every genotype and environment combination or treatment; i.e., missing data were inadmissible. The present paper addresses the problem. The Expectation-Maximization (EM) algorithm is implemented for fitting AMMI depite missing data. This missing-data version of AMMI is here termed "EM-AMMI". EM-AMMI is used to quantify the direct and indirect information in a yield trial, providing theoretical insight into the gain in accuracy observed and into the process of imputing missing data. For a given treatment, the direct yield data are the replicates of that treatment, and the indirect data are all the other yield data in the trial. EM-AMMI is used to inpute missing data for a New York soybean yield trial. Important applications arise from both unintentional and intentional missing data. Empirical measurements demonstrate good predictive success, and statistical theory attributes this success to the Stein effect. |
doi_str_mv | 10.1007/BF00224240 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1459160749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1459160749</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-d9506736708ad6166bc67c2cb7044913adf26ed5d52f7a352a6dc8b43408e66a3</originalsourceid><addsrcrecordid>eNpF0E1Lw0AQBuBFFFurF3-A1oMgQnT2OznWYrVQ8KA9h8nupkSSpu4mh_57t7Ta0zDMw8vwEnJN4YkC6OeXGQBjggk4IUMqOEt22ykZAghIpJZsQC5C-IbIJPBzMohnpjSXQ3I3bzZ9V61X46YKYTe3lavtuPMV1mOLHV6SsxLr4K4Oc0SWs9ev6Xuy-HibTyeLxPAUusRmEmKk0pCiVVSpwihtmCk0CJFRjrZkyllpJSs1cslQWZMWggtInVLIR-Rhn7vx7U_vQpfHj4yra1y7tg85FTKjCrTIIn3cU-PbELwr842vGvTbnEK-qyQ_VhLxzSG3Lxpn_-lfBxHcHwAGg3XpcW2qcIzMmEqFpNHd7l2JbY4rH83ykwHlwDRQzYH_AtNQbjY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1459160749</pqid></control><display><type>article</type><title>Imputing missing yield trial data</title><source>Springer Online Journal Archives (Through 1996)</source><creator>Gauch, H.G. Jr ; Zobel, R.W</creator><creatorcontrib>Gauch, H.G. Jr ; Zobel, R.W</creatorcontrib><description>The Additive Main effects and Multiplicative Interaction (AMMI) statistical model has been demonstrated effective for understanding genotype-environment interactions in yields, estimating yields more accurately, selecting superior genotypes more reliably, and allowing more flexible and efficient experimental designs. However, AMMI had required data for every genotype and environment combination or treatment; i.e., missing data were inadmissible. The present paper addresses the problem. The Expectation-Maximization (EM) algorithm is implemented for fitting AMMI depite missing data. This missing-data version of AMMI is here termed "EM-AMMI". EM-AMMI is used to quantify the direct and indirect information in a yield trial, providing theoretical insight into the gain in accuracy observed and into the process of imputing missing data. For a given treatment, the direct yield data are the replicates of that treatment, and the indirect data are all the other yield data in the trial. EM-AMMI is used to inpute missing data for a New York soybean yield trial. Important applications arise from both unintentional and intentional missing data. Empirical measurements demonstrate good predictive success, and statistical theory attributes this success to the Stein effect.</description><identifier>ISSN: 0040-5752</identifier><identifier>EISSN: 1432-2242</identifier><identifier>DOI: 10.1007/BF00224240</identifier><identifier>PMID: 24226735</identifier><identifier>CODEN: THAGA6</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>additive model ; Agronomy. Soil science and plant productions ; algorithms ; Ammi ; analysis of variance ; Biological and medical sciences ; Biometrics, statistics, experimental designs, modeling, agricultural computer applications ; crop yield ; ein ; Fundamental and applied biological sciences. Psychology ; Generalities. Biometrics, experimentation. Remote sensing ; genotype-environment interaction ; Glycine max ; yield components ; yield forecasting</subject><ispartof>Theoretical and applied genetics, 1990-06, Vol.79 (6), p.753-761</ispartof><rights>1991 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-d9506736708ad6166bc67c2cb7044913adf26ed5d52f7a352a6dc8b43408e66a3</citedby><cites>FETCH-LOGICAL-c380t-d9506736708ad6166bc67c2cb7044913adf26ed5d52f7a352a6dc8b43408e66a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19268451$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24226735$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gauch, H.G. Jr</creatorcontrib><creatorcontrib>Zobel, R.W</creatorcontrib><title>Imputing missing yield trial data</title><title>Theoretical and applied genetics</title><addtitle>Theor Appl Genet</addtitle><description>The Additive Main effects and Multiplicative Interaction (AMMI) statistical model has been demonstrated effective for understanding genotype-environment interactions in yields, estimating yields more accurately, selecting superior genotypes more reliably, and allowing more flexible and efficient experimental designs. However, AMMI had required data for every genotype and environment combination or treatment; i.e., missing data were inadmissible. The present paper addresses the problem. The Expectation-Maximization (EM) algorithm is implemented for fitting AMMI depite missing data. This missing-data version of AMMI is here termed "EM-AMMI". EM-AMMI is used to quantify the direct and indirect information in a yield trial, providing theoretical insight into the gain in accuracy observed and into the process of imputing missing data. For a given treatment, the direct yield data are the replicates of that treatment, and the indirect data are all the other yield data in the trial. EM-AMMI is used to inpute missing data for a New York soybean yield trial. Important applications arise from both unintentional and intentional missing data. Empirical measurements demonstrate good predictive success, and statistical theory attributes this success to the Stein effect.</description><subject>additive model</subject><subject>Agronomy. Soil science and plant productions</subject><subject>algorithms</subject><subject>Ammi</subject><subject>analysis of variance</subject><subject>Biological and medical sciences</subject><subject>Biometrics, statistics, experimental designs, modeling, agricultural computer applications</subject><subject>crop yield</subject><subject>ein</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Generalities. Biometrics, experimentation. Remote sensing</subject><subject>genotype-environment interaction</subject><subject>Glycine max</subject><subject>yield components</subject><subject>yield forecasting</subject><issn>0040-5752</issn><issn>1432-2242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNpF0E1Lw0AQBuBFFFurF3-A1oMgQnT2OznWYrVQ8KA9h8nupkSSpu4mh_57t7Ta0zDMw8vwEnJN4YkC6OeXGQBjggk4IUMqOEt22ykZAghIpJZsQC5C-IbIJPBzMohnpjSXQ3I3bzZ9V61X46YKYTe3lavtuPMV1mOLHV6SsxLr4K4Oc0SWs9ev6Xuy-HibTyeLxPAUusRmEmKk0pCiVVSpwihtmCk0CJFRjrZkyllpJSs1cslQWZMWggtInVLIR-Rhn7vx7U_vQpfHj4yra1y7tg85FTKjCrTIIn3cU-PbELwr842vGvTbnEK-qyQ_VhLxzSG3Lxpn_-lfBxHcHwAGg3XpcW2qcIzMmEqFpNHd7l2JbY4rH83ykwHlwDRQzYH_AtNQbjY</recordid><startdate>199006</startdate><enddate>199006</enddate><creator>Gauch, H.G. Jr</creator><creator>Zobel, R.W</creator><general>Springer</general><scope>FBQ</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>199006</creationdate><title>Imputing missing yield trial data</title><author>Gauch, H.G. Jr ; Zobel, R.W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-d9506736708ad6166bc67c2cb7044913adf26ed5d52f7a352a6dc8b43408e66a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>additive model</topic><topic>Agronomy. Soil science and plant productions</topic><topic>algorithms</topic><topic>Ammi</topic><topic>analysis of variance</topic><topic>Biological and medical sciences</topic><topic>Biometrics, statistics, experimental designs, modeling, agricultural computer applications</topic><topic>crop yield</topic><topic>ein</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Generalities. Biometrics, experimentation. Remote sensing</topic><topic>genotype-environment interaction</topic><topic>Glycine max</topic><topic>yield components</topic><topic>yield forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gauch, H.G. Jr</creatorcontrib><creatorcontrib>Zobel, R.W</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Theoretical and applied genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gauch, H.G. Jr</au><au>Zobel, R.W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imputing missing yield trial data</atitle><jtitle>Theoretical and applied genetics</jtitle><addtitle>Theor Appl Genet</addtitle><date>1990-06</date><risdate>1990</risdate><volume>79</volume><issue>6</issue><spage>753</spage><epage>761</epage><pages>753-761</pages><issn>0040-5752</issn><eissn>1432-2242</eissn><coden>THAGA6</coden><abstract>The Additive Main effects and Multiplicative Interaction (AMMI) statistical model has been demonstrated effective for understanding genotype-environment interactions in yields, estimating yields more accurately, selecting superior genotypes more reliably, and allowing more flexible and efficient experimental designs. However, AMMI had required data for every genotype and environment combination or treatment; i.e., missing data were inadmissible. The present paper addresses the problem. The Expectation-Maximization (EM) algorithm is implemented for fitting AMMI depite missing data. This missing-data version of AMMI is here termed "EM-AMMI". EM-AMMI is used to quantify the direct and indirect information in a yield trial, providing theoretical insight into the gain in accuracy observed and into the process of imputing missing data. For a given treatment, the direct yield data are the replicates of that treatment, and the indirect data are all the other yield data in the trial. EM-AMMI is used to inpute missing data for a New York soybean yield trial. Important applications arise from both unintentional and intentional missing data. Empirical measurements demonstrate good predictive success, and statistical theory attributes this success to the Stein effect.</abstract><cop>Heidelberg</cop><cop>Berlin</cop><pub>Springer</pub><pmid>24226735</pmid><doi>10.1007/BF00224240</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-5752 |
ispartof | Theoretical and applied genetics, 1990-06, Vol.79 (6), p.753-761 |
issn | 0040-5752 1432-2242 |
language | eng |
recordid | cdi_proquest_miscellaneous_1459160749 |
source | Springer Online Journal Archives (Through 1996) |
subjects | additive model Agronomy. Soil science and plant productions algorithms Ammi analysis of variance Biological and medical sciences Biometrics, statistics, experimental designs, modeling, agricultural computer applications crop yield ein Fundamental and applied biological sciences. Psychology Generalities. Biometrics, experimentation. Remote sensing genotype-environment interaction Glycine max yield components yield forecasting |
title | Imputing missing yield trial data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A21%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imputing%20missing%20yield%20trial%20data&rft.jtitle=Theoretical%20and%20applied%20genetics&rft.au=Gauch,%20H.G.%20Jr&rft.date=1990-06&rft.volume=79&rft.issue=6&rft.spage=753&rft.epage=761&rft.pages=753-761&rft.issn=0040-5752&rft.eissn=1432-2242&rft.coden=THAGA6&rft_id=info:doi/10.1007/BF00224240&rft_dat=%3Cproquest_cross%3E1459160749%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-d9506736708ad6166bc67c2cb7044913adf26ed5d52f7a352a6dc8b43408e66a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1459160749&rft_id=info:pmid/24226735&rfr_iscdi=true |