Loading…

Imputing missing yield trial data

The Additive Main effects and Multiplicative Interaction (AMMI) statistical model has been demonstrated effective for understanding genotype-environment interactions in yields, estimating yields more accurately, selecting superior genotypes more reliably, and allowing more flexible and efficient exp...

Full description

Saved in:
Bibliographic Details
Published in:Theoretical and applied genetics 1990-06, Vol.79 (6), p.753-761
Main Authors: Gauch, H.G. Jr, Zobel, R.W
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c380t-d9506736708ad6166bc67c2cb7044913adf26ed5d52f7a352a6dc8b43408e66a3
cites cdi_FETCH-LOGICAL-c380t-d9506736708ad6166bc67c2cb7044913adf26ed5d52f7a352a6dc8b43408e66a3
container_end_page 761
container_issue 6
container_start_page 753
container_title Theoretical and applied genetics
container_volume 79
creator Gauch, H.G. Jr
Zobel, R.W
description The Additive Main effects and Multiplicative Interaction (AMMI) statistical model has been demonstrated effective for understanding genotype-environment interactions in yields, estimating yields more accurately, selecting superior genotypes more reliably, and allowing more flexible and efficient experimental designs. However, AMMI had required data for every genotype and environment combination or treatment; i.e., missing data were inadmissible. The present paper addresses the problem. The Expectation-Maximization (EM) algorithm is implemented for fitting AMMI depite missing data. This missing-data version of AMMI is here termed "EM-AMMI". EM-AMMI is used to quantify the direct and indirect information in a yield trial, providing theoretical insight into the gain in accuracy observed and into the process of imputing missing data. For a given treatment, the direct yield data are the replicates of that treatment, and the indirect data are all the other yield data in the trial. EM-AMMI is used to inpute missing data for a New York soybean yield trial. Important applications arise from both unintentional and intentional missing data. Empirical measurements demonstrate good predictive success, and statistical theory attributes this success to the Stein effect.
doi_str_mv 10.1007/BF00224240
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1459160749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1459160749</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-d9506736708ad6166bc67c2cb7044913adf26ed5d52f7a352a6dc8b43408e66a3</originalsourceid><addsrcrecordid>eNpF0E1Lw0AQBuBFFFurF3-A1oMgQnT2OznWYrVQ8KA9h8nupkSSpu4mh_57t7Ta0zDMw8vwEnJN4YkC6OeXGQBjggk4IUMqOEt22ykZAghIpJZsQC5C-IbIJPBzMohnpjSXQ3I3bzZ9V61X46YKYTe3lavtuPMV1mOLHV6SsxLr4K4Oc0SWs9ev6Xuy-HibTyeLxPAUusRmEmKk0pCiVVSpwihtmCk0CJFRjrZkyllpJSs1cslQWZMWggtInVLIR-Rhn7vx7U_vQpfHj4yra1y7tg85FTKjCrTIIn3cU-PbELwr842vGvTbnEK-qyQ_VhLxzSG3Lxpn_-lfBxHcHwAGg3XpcW2qcIzMmEqFpNHd7l2JbY4rH83ykwHlwDRQzYH_AtNQbjY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1459160749</pqid></control><display><type>article</type><title>Imputing missing yield trial data</title><source>Springer Online Journal Archives (Through 1996)</source><creator>Gauch, H.G. Jr ; Zobel, R.W</creator><creatorcontrib>Gauch, H.G. Jr ; Zobel, R.W</creatorcontrib><description>The Additive Main effects and Multiplicative Interaction (AMMI) statistical model has been demonstrated effective for understanding genotype-environment interactions in yields, estimating yields more accurately, selecting superior genotypes more reliably, and allowing more flexible and efficient experimental designs. However, AMMI had required data for every genotype and environment combination or treatment; i.e., missing data were inadmissible. The present paper addresses the problem. The Expectation-Maximization (EM) algorithm is implemented for fitting AMMI depite missing data. This missing-data version of AMMI is here termed "EM-AMMI". EM-AMMI is used to quantify the direct and indirect information in a yield trial, providing theoretical insight into the gain in accuracy observed and into the process of imputing missing data. For a given treatment, the direct yield data are the replicates of that treatment, and the indirect data are all the other yield data in the trial. EM-AMMI is used to inpute missing data for a New York soybean yield trial. Important applications arise from both unintentional and intentional missing data. Empirical measurements demonstrate good predictive success, and statistical theory attributes this success to the Stein effect.</description><identifier>ISSN: 0040-5752</identifier><identifier>EISSN: 1432-2242</identifier><identifier>DOI: 10.1007/BF00224240</identifier><identifier>PMID: 24226735</identifier><identifier>CODEN: THAGA6</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>additive model ; Agronomy. Soil science and plant productions ; algorithms ; Ammi ; analysis of variance ; Biological and medical sciences ; Biometrics, statistics, experimental designs, modeling, agricultural computer applications ; crop yield ; ein ; Fundamental and applied biological sciences. Psychology ; Generalities. Biometrics, experimentation. Remote sensing ; genotype-environment interaction ; Glycine max ; yield components ; yield forecasting</subject><ispartof>Theoretical and applied genetics, 1990-06, Vol.79 (6), p.753-761</ispartof><rights>1991 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-d9506736708ad6166bc67c2cb7044913adf26ed5d52f7a352a6dc8b43408e66a3</citedby><cites>FETCH-LOGICAL-c380t-d9506736708ad6166bc67c2cb7044913adf26ed5d52f7a352a6dc8b43408e66a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19268451$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24226735$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gauch, H.G. Jr</creatorcontrib><creatorcontrib>Zobel, R.W</creatorcontrib><title>Imputing missing yield trial data</title><title>Theoretical and applied genetics</title><addtitle>Theor Appl Genet</addtitle><description>The Additive Main effects and Multiplicative Interaction (AMMI) statistical model has been demonstrated effective for understanding genotype-environment interactions in yields, estimating yields more accurately, selecting superior genotypes more reliably, and allowing more flexible and efficient experimental designs. However, AMMI had required data for every genotype and environment combination or treatment; i.e., missing data were inadmissible. The present paper addresses the problem. The Expectation-Maximization (EM) algorithm is implemented for fitting AMMI depite missing data. This missing-data version of AMMI is here termed "EM-AMMI". EM-AMMI is used to quantify the direct and indirect information in a yield trial, providing theoretical insight into the gain in accuracy observed and into the process of imputing missing data. For a given treatment, the direct yield data are the replicates of that treatment, and the indirect data are all the other yield data in the trial. EM-AMMI is used to inpute missing data for a New York soybean yield trial. Important applications arise from both unintentional and intentional missing data. Empirical measurements demonstrate good predictive success, and statistical theory attributes this success to the Stein effect.</description><subject>additive model</subject><subject>Agronomy. Soil science and plant productions</subject><subject>algorithms</subject><subject>Ammi</subject><subject>analysis of variance</subject><subject>Biological and medical sciences</subject><subject>Biometrics, statistics, experimental designs, modeling, agricultural computer applications</subject><subject>crop yield</subject><subject>ein</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Generalities. Biometrics, experimentation. Remote sensing</subject><subject>genotype-environment interaction</subject><subject>Glycine max</subject><subject>yield components</subject><subject>yield forecasting</subject><issn>0040-5752</issn><issn>1432-2242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNpF0E1Lw0AQBuBFFFurF3-A1oMgQnT2OznWYrVQ8KA9h8nupkSSpu4mh_57t7Ta0zDMw8vwEnJN4YkC6OeXGQBjggk4IUMqOEt22ykZAghIpJZsQC5C-IbIJPBzMohnpjSXQ3I3bzZ9V61X46YKYTe3lavtuPMV1mOLHV6SsxLr4K4Oc0SWs9ev6Xuy-HibTyeLxPAUusRmEmKk0pCiVVSpwihtmCk0CJFRjrZkyllpJSs1cslQWZMWggtInVLIR-Rhn7vx7U_vQpfHj4yra1y7tg85FTKjCrTIIn3cU-PbELwr842vGvTbnEK-qyQ_VhLxzSG3Lxpn_-lfBxHcHwAGg3XpcW2qcIzMmEqFpNHd7l2JbY4rH83ykwHlwDRQzYH_AtNQbjY</recordid><startdate>199006</startdate><enddate>199006</enddate><creator>Gauch, H.G. Jr</creator><creator>Zobel, R.W</creator><general>Springer</general><scope>FBQ</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>199006</creationdate><title>Imputing missing yield trial data</title><author>Gauch, H.G. Jr ; Zobel, R.W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-d9506736708ad6166bc67c2cb7044913adf26ed5d52f7a352a6dc8b43408e66a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>additive model</topic><topic>Agronomy. Soil science and plant productions</topic><topic>algorithms</topic><topic>Ammi</topic><topic>analysis of variance</topic><topic>Biological and medical sciences</topic><topic>Biometrics, statistics, experimental designs, modeling, agricultural computer applications</topic><topic>crop yield</topic><topic>ein</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Generalities. Biometrics, experimentation. Remote sensing</topic><topic>genotype-environment interaction</topic><topic>Glycine max</topic><topic>yield components</topic><topic>yield forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gauch, H.G. Jr</creatorcontrib><creatorcontrib>Zobel, R.W</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Theoretical and applied genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gauch, H.G. Jr</au><au>Zobel, R.W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imputing missing yield trial data</atitle><jtitle>Theoretical and applied genetics</jtitle><addtitle>Theor Appl Genet</addtitle><date>1990-06</date><risdate>1990</risdate><volume>79</volume><issue>6</issue><spage>753</spage><epage>761</epage><pages>753-761</pages><issn>0040-5752</issn><eissn>1432-2242</eissn><coden>THAGA6</coden><abstract>The Additive Main effects and Multiplicative Interaction (AMMI) statistical model has been demonstrated effective for understanding genotype-environment interactions in yields, estimating yields more accurately, selecting superior genotypes more reliably, and allowing more flexible and efficient experimental designs. However, AMMI had required data for every genotype and environment combination or treatment; i.e., missing data were inadmissible. The present paper addresses the problem. The Expectation-Maximization (EM) algorithm is implemented for fitting AMMI depite missing data. This missing-data version of AMMI is here termed "EM-AMMI". EM-AMMI is used to quantify the direct and indirect information in a yield trial, providing theoretical insight into the gain in accuracy observed and into the process of imputing missing data. For a given treatment, the direct yield data are the replicates of that treatment, and the indirect data are all the other yield data in the trial. EM-AMMI is used to inpute missing data for a New York soybean yield trial. Important applications arise from both unintentional and intentional missing data. Empirical measurements demonstrate good predictive success, and statistical theory attributes this success to the Stein effect.</abstract><cop>Heidelberg</cop><cop>Berlin</cop><pub>Springer</pub><pmid>24226735</pmid><doi>10.1007/BF00224240</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-5752
ispartof Theoretical and applied genetics, 1990-06, Vol.79 (6), p.753-761
issn 0040-5752
1432-2242
language eng
recordid cdi_proquest_miscellaneous_1459160749
source Springer Online Journal Archives (Through 1996)
subjects additive model
Agronomy. Soil science and plant productions
algorithms
Ammi
analysis of variance
Biological and medical sciences
Biometrics, statistics, experimental designs, modeling, agricultural computer applications
crop yield
ein
Fundamental and applied biological sciences. Psychology
Generalities. Biometrics, experimentation. Remote sensing
genotype-environment interaction
Glycine max
yield components
yield forecasting
title Imputing missing yield trial data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A21%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imputing%20missing%20yield%20trial%20data&rft.jtitle=Theoretical%20and%20applied%20genetics&rft.au=Gauch,%20H.G.%20Jr&rft.date=1990-06&rft.volume=79&rft.issue=6&rft.spage=753&rft.epage=761&rft.pages=753-761&rft.issn=0040-5752&rft.eissn=1432-2242&rft.coden=THAGA6&rft_id=info:doi/10.1007/BF00224240&rft_dat=%3Cproquest_cross%3E1459160749%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-d9506736708ad6166bc67c2cb7044913adf26ed5d52f7a352a6dc8b43408e66a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1459160749&rft_id=info:pmid/24226735&rfr_iscdi=true