Loading…
Gains from the clonal and the clonal seed-orchard options compared for tree breeding programs
Gains expected from clonal propagation of selections for plantation from a breeding population were compared with those expected from seed propagation via clonal seed-orchards of selections from the same breeding population. Assumptions were made about numbers of clones selected, size of the breedin...
Saved in:
Published in: | Theoretical and applied genetics 1985-12, Vol.71 (2), p.242-249 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Gains expected from clonal propagation of selections for plantation from a breeding population were compared with those expected from seed propagation via clonal seed-orchards of selections from the same breeding population. Assumptions were made about numbers of clones selected, size of the breeding population, relative sizes of additive and dominance genetic variance components and time required for various operations. Even when dominance variance is zero, considerable extra gain is obtained by the clonal option over the seed-orchard option; mostly due to the shorter time between selection in the breeding population and field planting. When dominance variance equals additive variance, the advantage of the clonal option due to time saved is approximately equal to the advantage due to genetics (i.e. use of more of the additive variance, use of non-additive variance and greater precision of selection). This means that there is a substantial gain to be made simply by getting superior genotypes into plantations more quickly via the clonal option. The gains obtainable through the use of clonal forestry may also be obtained through seed orchards, but some decades later. In no case was the seed-orchard option superior to the clonal option in terms of the gains obtained. No clonal propagation program can advance without a strong sexually-based breeding program to supply it with improved genotypes. The opportunity for improvement comes from genetic recombination. |
---|---|
ISSN: | 0040-5752 1432-2242 |
DOI: | 10.1007/BF00252062 |