Loading…

Electrochemical sensing of glucose by carbon cloth-supported Co3O4/PbO2 core-shell nanorod arrays

A novel electrochemical sensor for the detection of glucose was constructed based on the use of Co3O4/PbO2 core-shell nanorod arrays as electrocatalysts. In this paper the Co3O4/PbO2 core-shell nanorod arrays grow directly on a flexible carbon cloth substrate by the combination of hydrothermal synth...

Full description

Saved in:
Bibliographic Details
Published in:Biosensors & bioelectronics 2014-03, Vol.53, p.200-206
Main Authors: Chen, Ting, Li, Xiaowei, Qiu, Cuicui, Zhu, Wencai, Ma, Houyi, Chen, Shenhao, Meng, Oliver
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A novel electrochemical sensor for the detection of glucose was constructed based on the use of Co3O4/PbO2 core-shell nanorod arrays as electrocatalysts. In this paper the Co3O4/PbO2 core-shell nanorod arrays grow directly on a flexible carbon cloth substrate by the combination of hydrothermal synthesis and electrochemical deposition methods. The as-prepared hierarchical nanocomposites show the structural characteristics of nanowire core and nanoparticle shell. The carbon cloth-supported Co3O4/PbO2 nanorod array electrode exhibits higher sensitivity (460.3 μA mM(-1)cm(-2) in the range from 5 μM to 1.2mM) and lower detection limit (0.31 μM (S/N=3)) than the carbon cloth-supported Co3O4 nanowire array electrode. Both the three-dimensional network of carbon cloth substrate and the hierarchical nanostructure of binary Co3O4/PbO2 composites make such an electrode have high electrocatalytic activity towards the glucose oxidation. Due to the excellent sensitivity, repeatability and anti-interference ability, the carbon cloth-supported Co3O4/PbO2 nanorod arrays will be the promising materials for fabricating practical non-enzymatic glucose sensors.
ISSN:0956-5663
1873-4235
DOI:10.1016/j.bios.2013.09.059