Loading…

Assessing leaf photoprotective mechanisms using terrestrial LiDAR: towards mapping canopy photosynthetic performance in three dimensions

Terrestrial laser scanning (TLS) data allow spatially explicit (x, y, z) laser return intensities to be recorded throughout a plant canopy, which could considerably improve our understanding of how physiological processes vary in three-dimensional space. However, the utility of TLS data for the quan...

Full description

Saved in:
Bibliographic Details
Published in:The New phytologist 2014-01, Vol.201 (1), p.344-356
Main Authors: Magney, Troy S., Eusden, Spencer A., Eitel, Jan U. H., Logan, Barry A., Jiang, Jingjue, Vierling, Lee A.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Terrestrial laser scanning (TLS) data allow spatially explicit (x, y, z) laser return intensities to be recorded throughout a plant canopy, which could considerably improve our understanding of how physiological processes vary in three-dimensional space. However, the utility of TLS data for the quantification of plant physiological properties remains largely unexplored. Here, we test whether the laser return intensity of green (532-nm) TLS correlates with changes in the de-epoxidation state of the xanthophyll cycle and photoprotective non-photochemical quenching (NPQ), and compare the ability of TLS to quantify these parameters with the passively measured photochemical reflectance index (PRI). We exposed leaves from five plant species to increasing light intensities to induce NPQ and de-epoxidation of violaxanthin (V) to antheraxanthin (A) and zeaxanthin (Z). At each light intensity, the green laser return intensity (GLRI), narrowband spectral reflectance, chlorophyll fluorescence emission and xanthophyll cycle pigment composition were recorded. Strong relationships between both predictor variables (GLRI, PRI) and both explanatory variables (NPQ, xanthophyll cycle de-epoxidation) were observed. GLRI holds promise to provide detailed (mm) information about plant physiological status to improve our understanding of the patterns and mechanisms driving foliar photoprotection. We discuss the potential for scaling these laboratory data to three-dimensional canopy space.
ISSN:0028-646X
1469-8137
DOI:10.1111/nph.12453