Loading…
Expression and function of cyclooxygenase-2 is necessary for hamster blastocyst hatching
Blastocyst hatching is critical for successful implantation leading to pregnancy. Its failure causes infertility. The phenomenon of blastocyst hatching in humans is poorly understood and the available information on this stems from studies of rodents such as mice and hamsters. We and others showed t...
Saved in:
Published in: | Molecular human reproduction 2013-12, Vol.19 (12), p.838-851 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Blastocyst hatching is critical for successful implantation leading to pregnancy. Its failure causes infertility. The phenomenon of blastocyst hatching in humans is poorly understood and the available information on this stems from studies of rodents such as mice and hamsters. We and others showed that hamster blastocyst hatching is characterized by firstly blastocyst deflation followed by a dissolution of the zona pellucida (zona) and accompanied by trophectodermal projections (TEPs). We also showed that embryo-derived cathepsins (Cat) proteases, specifically Cat-L, -B and -P act as zonalysins and are responsible for hatching. In this study, we show the expression and function of one of the potential regulators of embryogenesis, cyclooxygenase (COX)-2 during blastocyst development and hatching. The expression of COX-2 mRNA and protein was observed in 8-cell through hatched blastocyst stages and it was also localized to blastocyst's TEPs. Specific COX-2 inhibitors, NS-398 and CAY-10404, inhibited blastocyst hatching; percentages achieved were only 28.4 ± 5.3 and 32.3 ± 5.4%, respectively, compared with >90% with untreated embryos. Interestingly, inhibitor-treated blastocysts failed to deflate, normally observed during hatching. Supplementation of prostaglandins (PGs)-E2 or -I2 to cultured embryos reversed the inhibitors' effect on hatching and also the deflation behavior. Importantly, the levels of mRNA and protein of Cat-L, -B and -P showed a significant reduction in the inhibitor-treated embryos compared with untreated embryos, although its mechanism remains to be examined. These data provide the first evidence that COX-2 is critical for blastocyst hatching in the golden hamster. |
---|---|
ISSN: | 1360-9947 1460-2407 |
DOI: | 10.1093/molehr/gat063 |