Loading…

Total, Direct, and Indirect Effects in Logit and Probit Models

This article presents a method for estimating and interpreting total, direct, and indirect effects in logit or probit models. The method extends the decomposition properties of linear models to these models; it closes the much-discussed gap between results based on the “difference in coefficients” m...

Full description

Saved in:
Bibliographic Details
Published in:Sociological methods & research 2013-05, Vol.42 (2), p.164-191
Main Authors: Breen, Richard, Karlson, Kristian Bernt, Holm, Anders
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This article presents a method for estimating and interpreting total, direct, and indirect effects in logit or probit models. The method extends the decomposition properties of linear models to these models; it closes the much-discussed gap between results based on the “difference in coefficients” method and the “product of coefficients” method in mediation analysis involving nonlinear probability models models; it reports effects measured on both the logit or probit scale and the probability scale; and it identifies causal mediation effects under the sequential ignorability assumption. We also show that while our method is computationally simpler than other methods, it always performs as well as, or better than, these methods. Further derivations suggest a hitherto unrecognized issue in identifying heterogeneous mediation effects in nonlinear probability models. We conclude the article with an application of our method to data from the National Educational Longitudinal Study of 1988.
ISSN:0049-1241
1552-8294
DOI:10.1177/0049124113494572