Loading…

Biochemistry, genetics and physiology of microbial styrene degradation

The last few decades have seen a steady increase in the global production and utilisation of the alkenylbenzene, styrene. The compound is of major importance in the petrochemical and polymer-processing industries, which can contribute to the pollution of natural resources via the release of styrene-...

Full description

Saved in:
Bibliographic Details
Published in:FEMS microbiology reviews 2002-11, Vol.26 (4), p.403-417, Article 403
Main Authors: O’Leary, Niall D., O’Connor, Kevin E., Dobson, Alan D.W.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The last few decades have seen a steady increase in the global production and utilisation of the alkenylbenzene, styrene. The compound is of major importance in the petrochemical and polymer-processing industries, which can contribute to the pollution of natural resources via the release of styrene-contaminated effluents and off-gases. This is a cause for some concern as human over-exposure to styrene, and/or its early catabolic intermediates, can have a range of destructive health effects. These features have prompted researchers to investigate routes of styrene degradation in microorganisms, given the potential application of these organisms in bioremediation/biodegradation strategies. This review aims to examine the recent advances which have been made in elucidating the underlying biochemistry, genetics and physiology of microbial styrene catabolism, identifying areas of interest for the future and highlighting the potential industrial importance of individual catabolic pathway enzymes.
ISSN:0168-6445
1574-6976
DOI:10.1016/S0168-6445(02)00126-2