Loading…

Feature extraction and recognition of ictal EEG using EMD and SVM

Abstract Automatic seizure detection is significant for long-term monitoring of epilepsy, as well as for diagnostics and rehabilitation, and can decrease the duration of work required when inspecting the EEG signals. In this study we propose a novel method for feature extraction and pattern recognit...

Full description

Saved in:
Bibliographic Details
Published in:Computers in biology and medicine 2013-08, Vol.43 (7), p.807-816
Main Authors: Li, Shufang, Zhou, Weidong, Yuan, Qi, Geng, Shujuan, Cai, Dongmei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c490t-710eff09512a05f98479ef030d2c8fae4f6ca6344631b437fee38f7254d4749e3
cites cdi_FETCH-LOGICAL-c490t-710eff09512a05f98479ef030d2c8fae4f6ca6344631b437fee38f7254d4749e3
container_end_page 816
container_issue 7
container_start_page 807
container_title Computers in biology and medicine
container_volume 43
creator Li, Shufang
Zhou, Weidong
Yuan, Qi
Geng, Shujuan
Cai, Dongmei
description Abstract Automatic seizure detection is significant for long-term monitoring of epilepsy, as well as for diagnostics and rehabilitation, and can decrease the duration of work required when inspecting the EEG signals. In this study we propose a novel method for feature extraction and pattern recognition of ictal EEG, based upon empirical mode decomposition (EMD) and support vector machine (SVM). First the EEG signal is decomposed into Intrinsic Mode Functions (IMFs) using EMD, and then the coefficient of variation and fluctuation index of IMFs are extracted as features. SVM is then used as the classifier for recognition of ictal EEG. The experimental results show that this algorithm can achieve the sensitivity of 97.00% and specificity of 96.25% for interictal and ictal EEGs, and the sensitivity of 98.00% and specificity of 99.40% for normal and ictal EEGs on Bonn data sets. Besides, the experiment with interictal and ictal EEGs from Qilu Hospital dataset also yields a satisfactory sensitivity of 98.05% and specificity of 100%.
doi_str_mv 10.1016/j.compbiomed.2013.04.002
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1464515520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0010482513000905</els_id><sourcerecordid>2990207311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-710eff09512a05f98479ef030d2c8fae4f6ca6344631b437fee38f7254d4749e3</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhi0EokvhL6BIXLgkjO1xPi5IpWwLUisOBa6W1xlXXrLxYicV_fc43VaVeoGTZfmZscfPy1jBoeLA6w_byobdfuPDjvpKAJcVYAUgnrEVb5uuBCXxOVsBcCixFeqIvUppCwAIEl6yIyEbrBvBV-zkjMw0RyrozxSNnXwYCzP2RSQbrkd_tw-u8HYyQ7Fenxdz8uN1sb78fIdd_bx8zV44MyR6c78esx9n6--nX8qLb-dfT08uSosdTGXDgZyDTnFhQLmuxaYjl5_TC9s6Q-hqa2qJWEu-Qdk4Itm6RijsscGO5DF7f-i7j-H3TGnSO58sDYMZKcxJc6xRcaUE_BuVda2aFkSX0XdP0G2Y45gHWSiVOcQ2U-2BsjGkFMnpffQ7E281B70Y0Vv9aEQvRjSgzkZy6dv7C-bNcvZQ-KAgA58OAOXPu_EUdbKeRku9zxIm3Qf_P7d8fNLEDn701gy_6JbS40w6CQ36aknGEgwucyi6HJe_3cmyoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365665448</pqid></control><display><type>article</type><title>Feature extraction and recognition of ictal EEG using EMD and SVM</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Li, Shufang ; Zhou, Weidong ; Yuan, Qi ; Geng, Shujuan ; Cai, Dongmei</creator><creatorcontrib>Li, Shufang ; Zhou, Weidong ; Yuan, Qi ; Geng, Shujuan ; Cai, Dongmei</creatorcontrib><description>Abstract Automatic seizure detection is significant for long-term monitoring of epilepsy, as well as for diagnostics and rehabilitation, and can decrease the duration of work required when inspecting the EEG signals. In this study we propose a novel method for feature extraction and pattern recognition of ictal EEG, based upon empirical mode decomposition (EMD) and support vector machine (SVM). First the EEG signal is decomposed into Intrinsic Mode Functions (IMFs) using EMD, and then the coefficient of variation and fluctuation index of IMFs are extracted as features. SVM is then used as the classifier for recognition of ictal EEG. The experimental results show that this algorithm can achieve the sensitivity of 97.00% and specificity of 96.25% for interictal and ictal EEGs, and the sensitivity of 98.00% and specificity of 99.40% for normal and ictal EEGs on Bonn data sets. Besides, the experiment with interictal and ictal EEGs from Qilu Hospital dataset also yields a satisfactory sensitivity of 98.05% and specificity of 100%.</description><identifier>ISSN: 0010-4825</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2013.04.002</identifier><identifier>PMID: 23746721</identifier><identifier>CODEN: CBMDAW</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Algorithms ; Databases, Factual ; Decomposition ; EEG ; Electroencephalography - methods ; EMD ; Epilepsy ; Epilepsy - diagnosis ; Epilepsy - physiopathology ; Feature extraction and recognition ; Humans ; Internal Medicine ; Neural networks ; Other ; Reproducibility of Results ; Seizure detection ; Seizures - physiopathology ; Sensitivity and Specificity ; Signal Processing, Computer-Assisted ; Support Vector Machine ; SVM ; Wavelet transforms</subject><ispartof>Computers in biology and medicine, 2013-08, Vol.43 (7), p.807-816</ispartof><rights>Elsevier Ltd</rights><rights>2013 Elsevier Ltd</rights><rights>Copyright © 2013 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier Limited Aug 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-710eff09512a05f98479ef030d2c8fae4f6ca6344631b437fee38f7254d4749e3</citedby><cites>FETCH-LOGICAL-c490t-710eff09512a05f98479ef030d2c8fae4f6ca6344631b437fee38f7254d4749e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23746721$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Shufang</creatorcontrib><creatorcontrib>Zhou, Weidong</creatorcontrib><creatorcontrib>Yuan, Qi</creatorcontrib><creatorcontrib>Geng, Shujuan</creatorcontrib><creatorcontrib>Cai, Dongmei</creatorcontrib><title>Feature extraction and recognition of ictal EEG using EMD and SVM</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>Abstract Automatic seizure detection is significant for long-term monitoring of epilepsy, as well as for diagnostics and rehabilitation, and can decrease the duration of work required when inspecting the EEG signals. In this study we propose a novel method for feature extraction and pattern recognition of ictal EEG, based upon empirical mode decomposition (EMD) and support vector machine (SVM). First the EEG signal is decomposed into Intrinsic Mode Functions (IMFs) using EMD, and then the coefficient of variation and fluctuation index of IMFs are extracted as features. SVM is then used as the classifier for recognition of ictal EEG. The experimental results show that this algorithm can achieve the sensitivity of 97.00% and specificity of 96.25% for interictal and ictal EEGs, and the sensitivity of 98.00% and specificity of 99.40% for normal and ictal EEGs on Bonn data sets. Besides, the experiment with interictal and ictal EEGs from Qilu Hospital dataset also yields a satisfactory sensitivity of 98.05% and specificity of 100%.</description><subject>Algorithms</subject><subject>Databases, Factual</subject><subject>Decomposition</subject><subject>EEG</subject><subject>Electroencephalography - methods</subject><subject>EMD</subject><subject>Epilepsy</subject><subject>Epilepsy - diagnosis</subject><subject>Epilepsy - physiopathology</subject><subject>Feature extraction and recognition</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Neural networks</subject><subject>Other</subject><subject>Reproducibility of Results</subject><subject>Seizure detection</subject><subject>Seizures - physiopathology</subject><subject>Sensitivity and Specificity</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Support Vector Machine</subject><subject>SVM</subject><subject>Wavelet transforms</subject><issn>0010-4825</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkk1v1DAQhi0EokvhL6BIXLgkjO1xPi5IpWwLUisOBa6W1xlXXrLxYicV_fc43VaVeoGTZfmZscfPy1jBoeLA6w_byobdfuPDjvpKAJcVYAUgnrEVb5uuBCXxOVsBcCixFeqIvUppCwAIEl6yIyEbrBvBV-zkjMw0RyrozxSNnXwYCzP2RSQbrkd_tw-u8HYyQ7Fenxdz8uN1sb78fIdd_bx8zV44MyR6c78esx9n6--nX8qLb-dfT08uSosdTGXDgZyDTnFhQLmuxaYjl5_TC9s6Q-hqa2qJWEu-Qdk4Itm6RijsscGO5DF7f-i7j-H3TGnSO58sDYMZKcxJc6xRcaUE_BuVda2aFkSX0XdP0G2Y45gHWSiVOcQ2U-2BsjGkFMnpffQ7E281B70Y0Vv9aEQvRjSgzkZy6dv7C-bNcvZQ-KAgA58OAOXPu_EUdbKeRku9zxIm3Qf_P7d8fNLEDn701gy_6JbS40w6CQ36aknGEgwucyi6HJe_3cmyoA</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Li, Shufang</creator><creator>Zhou, Weidong</creator><creator>Yuan, Qi</creator><creator>Geng, Shujuan</creator><creator>Cai, Dongmei</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope><scope>7TK</scope></search><sort><creationdate>20130801</creationdate><title>Feature extraction and recognition of ictal EEG using EMD and SVM</title><author>Li, Shufang ; Zhou, Weidong ; Yuan, Qi ; Geng, Shujuan ; Cai, Dongmei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-710eff09512a05f98479ef030d2c8fae4f6ca6344631b437fee38f7254d4749e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Databases, Factual</topic><topic>Decomposition</topic><topic>EEG</topic><topic>Electroencephalography - methods</topic><topic>EMD</topic><topic>Epilepsy</topic><topic>Epilepsy - diagnosis</topic><topic>Epilepsy - physiopathology</topic><topic>Feature extraction and recognition</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Neural networks</topic><topic>Other</topic><topic>Reproducibility of Results</topic><topic>Seizure detection</topic><topic>Seizures - physiopathology</topic><topic>Sensitivity and Specificity</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Support Vector Machine</topic><topic>SVM</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Shufang</creatorcontrib><creatorcontrib>Zhou, Weidong</creatorcontrib><creatorcontrib>Yuan, Qi</creatorcontrib><creatorcontrib>Geng, Shujuan</creatorcontrib><creatorcontrib>Cai, Dongmei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Research Library</collection><collection>ProQuest Biological Science Journals</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Shufang</au><au>Zhou, Weidong</au><au>Yuan, Qi</au><au>Geng, Shujuan</au><au>Cai, Dongmei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feature extraction and recognition of ictal EEG using EMD and SVM</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2013-08-01</date><risdate>2013</risdate><volume>43</volume><issue>7</issue><spage>807</spage><epage>816</epage><pages>807-816</pages><issn>0010-4825</issn><eissn>1879-0534</eissn><coden>CBMDAW</coden><abstract>Abstract Automatic seizure detection is significant for long-term monitoring of epilepsy, as well as for diagnostics and rehabilitation, and can decrease the duration of work required when inspecting the EEG signals. In this study we propose a novel method for feature extraction and pattern recognition of ictal EEG, based upon empirical mode decomposition (EMD) and support vector machine (SVM). First the EEG signal is decomposed into Intrinsic Mode Functions (IMFs) using EMD, and then the coefficient of variation and fluctuation index of IMFs are extracted as features. SVM is then used as the classifier for recognition of ictal EEG. The experimental results show that this algorithm can achieve the sensitivity of 97.00% and specificity of 96.25% for interictal and ictal EEGs, and the sensitivity of 98.00% and specificity of 99.40% for normal and ictal EEGs on Bonn data sets. Besides, the experiment with interictal and ictal EEGs from Qilu Hospital dataset also yields a satisfactory sensitivity of 98.05% and specificity of 100%.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>23746721</pmid><doi>10.1016/j.compbiomed.2013.04.002</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-4825
ispartof Computers in biology and medicine, 2013-08, Vol.43 (7), p.807-816
issn 0010-4825
1879-0534
language eng
recordid cdi_proquest_miscellaneous_1464515520
source ScienceDirect Freedom Collection 2022-2024
subjects Algorithms
Databases, Factual
Decomposition
EEG
Electroencephalography - methods
EMD
Epilepsy
Epilepsy - diagnosis
Epilepsy - physiopathology
Feature extraction and recognition
Humans
Internal Medicine
Neural networks
Other
Reproducibility of Results
Seizure detection
Seizures - physiopathology
Sensitivity and Specificity
Signal Processing, Computer-Assisted
Support Vector Machine
SVM
Wavelet transforms
title Feature extraction and recognition of ictal EEG using EMD and SVM
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A37%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feature%20extraction%20and%20recognition%20of%20ictal%20EEG%20using%20EMD%20and%20SVM&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Li,%20Shufang&rft.date=2013-08-01&rft.volume=43&rft.issue=7&rft.spage=807&rft.epage=816&rft.pages=807-816&rft.issn=0010-4825&rft.eissn=1879-0534&rft.coden=CBMDAW&rft_id=info:doi/10.1016/j.compbiomed.2013.04.002&rft_dat=%3Cproquest_cross%3E2990207311%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c490t-710eff09512a05f98479ef030d2c8fae4f6ca6344631b437fee38f7254d4749e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1365665448&rft_id=info:pmid/23746721&rfr_iscdi=true