Loading…
Preparation, Characterization and Catalytic Activity of Palladium Nanoparticles Embedded in the Mesoporous Silica Matrices
Novel in-situ reduction approach was applied for the synthesis of palladium nanoparticles in the pores of mesoporous silica materials with grafted siliconhydride groups. Matrices possessing different structural properties (MCM-41, SBA-15 and Silochrom) were used. Samples were studied by nitrogen ads...
Saved in:
Published in: | World journal of nano science and engineering 2012-09, Vol.2 (3), p.117-125 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Novel in-situ reduction approach was applied for the synthesis of palladium nanoparticles in the pores of mesoporous silica materials with grafted siliconhydride groups. Matrices possessing different structural properties (MCM-41, SBA-15 and Silochrom) were used. Samples were studied by nitrogen adsorption-desorption method, low-angle X-ray diffraction, transmission electron microscopy (TEM) and FT-IR/PAS spectroscopy. The temperature-programmed oxidation (TPO) and reduction (TPR) methods were applied to examine reducibility of palladium species. Palladium containing catalysts were tested in methane oxidation reaction. It was demonstrated that relatively large pores in SBA-15 type silica facilitated formation of well-dispersed palladium nanoparticles confined in the pores channels. In the case of MCM-41 support, metallic palladium nanoparticles were formed on the external surface. The obtained materials showed high catalytic activity. Lower activity of the samples containing small crystallites located in the pore volume at high temperatures was related to worse accessibility of active sites to the reation mixture. |
---|---|
ISSN: | 2161-4954 2161-4962 |
DOI: | 10.4236/wjnse.2012.23015 |