Loading…
Nanosphere-Decorated Tunable Anatase Titania Conic Self-Assemblies
The evolution of morphology has been a key parameter to modify electronic and physical properties of functional materials. For anatase titania, most research has been focused on tubular and/or mesoporous shapes. In this report, we note our findings of cone-shaped anatase titania self-assemblies grow...
Saved in:
Published in: | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology 2013-09, Vol.15 (9), p.1-11, Article 1837 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c368t-eed38be73c413a6a3e2babcef7c996b845a3ba94117066fe72c4d55a23ffed873 |
container_end_page | 11 |
container_issue | 9 |
container_start_page | 1 |
container_title | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology |
container_volume | 15 |
creator | Zhang, Bong June Kim, Kwang Jin Lee, Deuk Yong |
description | The evolution of morphology has been a key parameter to modify electronic and physical properties of functional materials. For anatase titania, most research has been focused on tubular and/or mesoporous shapes. In this report, we note our findings of cone-shaped anatase titania self-assemblies grown by anodic oxidation. These individual anatase TiO
2
cones are constructed from numerous titania nanospheres. The variation in morphology (base diameter and height) is controlled by varying the electrolyte, the concentration of fluoride, and the applied voltage. The crystallization of the anatase phase and the enlarged surface area is confirmed by various spectroscopic methods (FE-SEM, EDS, and TEM). Through controlling the enhanced surface area and the well-ordered ion passage, the Li
+
diffusion rate significantly increases and leads to reversibility (charge–discharge cycle). The CV and EIS results imply structurally modified titania conic self-assemblies which can be a potential lithium intercalation template. |
doi_str_mv | 10.1007/s11051-013-1837-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1464544756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3080585051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-eed38be73c413a6a3e2babcef7c996b845a3ba94117066fe72c4d55a23ffed873</originalsourceid><addsrcrecordid>eNp1kE2L1EAQhoMouI7-AG8BEfbS2tXfOc7O-gWLHhzBW1PpqWiGTGfsSg7--80ww7IInqqgnveleKrqNch3IKV_zwDSgpCgBQTthX1SXYH1SoTG_Xy67DoEIb0zz6sXzHspwalGXVU3XzGPfPxNhcQtpbHgRLt6O2dsB6rXGSdkqrf9hLnHejPmPtXfaejEmpkO7dATv6yedTgwvbrMVfXj44ft5rO4-_bpy2Z9J5J2YRJEOx1a8joZ0OhQk2qxTdT51DSuDcaibrExAF4615FXyeysRaW7jnbB61V1fe49lvHPTDzFQ8-JhgEzjTNHMM5YY7x1C_rmH3Q_ziUv3y2UtkHZ4E8UnKlURuZCXTyW_oDlbwQZT1bj2WpcrMaT1WiXzNtLM3LCoSuYU88PQeV9aBTAwqkzx8sp_6Ly6IP_lt8DPjCGTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1435825876</pqid></control><display><type>article</type><title>Nanosphere-Decorated Tunable Anatase Titania Conic Self-Assemblies</title><source>Springer Nature</source><creator>Zhang, Bong June ; Kim, Kwang Jin ; Lee, Deuk Yong</creator><creatorcontrib>Zhang, Bong June ; Kim, Kwang Jin ; Lee, Deuk Yong</creatorcontrib><description>The evolution of morphology has been a key parameter to modify electronic and physical properties of functional materials. For anatase titania, most research has been focused on tubular and/or mesoporous shapes. In this report, we note our findings of cone-shaped anatase titania self-assemblies grown by anodic oxidation. These individual anatase TiO
2
cones are constructed from numerous titania nanospheres. The variation in morphology (base diameter and height) is controlled by varying the electrolyte, the concentration of fluoride, and the applied voltage. The crystallization of the anatase phase and the enlarged surface area is confirmed by various spectroscopic methods (FE-SEM, EDS, and TEM). Through controlling the enhanced surface area and the well-ordered ion passage, the Li
+
diffusion rate significantly increases and leads to reversibility (charge–discharge cycle). The CV and EIS results imply structurally modified titania conic self-assemblies which can be a potential lithium intercalation template.</description><identifier>ISSN: 1388-0764</identifier><identifier>EISSN: 1572-896X</identifier><identifier>DOI: 10.1007/s11051-013-1837-5</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Anatase ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Conics ; Cross-disciplinary physics: materials science; rheology ; Crystallization ; Diffusion in nanoscale solids ; Diffusion in solids ; Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Exact sciences and technology ; Inorganic Chemistry ; Lasers ; Lithium ; Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties ; Materials Science ; Methods of nanofabrication ; Morphology ; Nanomaterials ; Nanoparticles ; Nanostructure ; Nanotechnology ; Optical Devices ; Optics ; Photonics ; Physical Chemistry ; Physical properties ; Physics ; Research Paper ; Self assembly ; Surface area ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Titanium dioxide ; Transport properties of condensed matter (nonelectronic)</subject><ispartof>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2013-09, Vol.15 (9), p.1-11, Article 1837</ispartof><rights>Springer Science+Business Media Dordrecht 2013</rights><rights>2014 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c368t-eed38be73c413a6a3e2babcef7c996b845a3ba94117066fe72c4d55a23ffed873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27789211$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Bong June</creatorcontrib><creatorcontrib>Kim, Kwang Jin</creatorcontrib><creatorcontrib>Lee, Deuk Yong</creatorcontrib><title>Nanosphere-Decorated Tunable Anatase Titania Conic Self-Assemblies</title><title>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</title><addtitle>J Nanopart Res</addtitle><description>The evolution of morphology has been a key parameter to modify electronic and physical properties of functional materials. For anatase titania, most research has been focused on tubular and/or mesoporous shapes. In this report, we note our findings of cone-shaped anatase titania self-assemblies grown by anodic oxidation. These individual anatase TiO
2
cones are constructed from numerous titania nanospheres. The variation in morphology (base diameter and height) is controlled by varying the electrolyte, the concentration of fluoride, and the applied voltage. The crystallization of the anatase phase and the enlarged surface area is confirmed by various spectroscopic methods (FE-SEM, EDS, and TEM). Through controlling the enhanced surface area and the well-ordered ion passage, the Li
+
diffusion rate significantly increases and leads to reversibility (charge–discharge cycle). The CV and EIS results imply structurally modified titania conic self-assemblies which can be a potential lithium intercalation template.</description><subject>Anatase</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Conics</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crystallization</subject><subject>Diffusion in nanoscale solids</subject><subject>Diffusion in solids</subject><subject>Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Exact sciences and technology</subject><subject>Inorganic Chemistry</subject><subject>Lasers</subject><subject>Lithium</subject><subject>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</subject><subject>Materials Science</subject><subject>Methods of nanofabrication</subject><subject>Morphology</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physical Chemistry</subject><subject>Physical properties</subject><subject>Physics</subject><subject>Research Paper</subject><subject>Self assembly</subject><subject>Surface area</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Titanium dioxide</subject><subject>Transport properties of condensed matter (nonelectronic)</subject><issn>1388-0764</issn><issn>1572-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kE2L1EAQhoMouI7-AG8BEfbS2tXfOc7O-gWLHhzBW1PpqWiGTGfsSg7--80ww7IInqqgnveleKrqNch3IKV_zwDSgpCgBQTthX1SXYH1SoTG_Xy67DoEIb0zz6sXzHspwalGXVU3XzGPfPxNhcQtpbHgRLt6O2dsB6rXGSdkqrf9hLnHejPmPtXfaejEmpkO7dATv6yedTgwvbrMVfXj44ft5rO4-_bpy2Z9J5J2YRJEOx1a8joZ0OhQk2qxTdT51DSuDcaibrExAF4615FXyeysRaW7jnbB61V1fe49lvHPTDzFQ8-JhgEzjTNHMM5YY7x1C_rmH3Q_ziUv3y2UtkHZ4E8UnKlURuZCXTyW_oDlbwQZT1bj2WpcrMaT1WiXzNtLM3LCoSuYU88PQeV9aBTAwqkzx8sp_6Ly6IP_lt8DPjCGTA</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Zhang, Bong June</creator><creator>Kim, Kwang Jin</creator><creator>Lee, Deuk Yong</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7QQ</scope></search><sort><creationdate>20130901</creationdate><title>Nanosphere-Decorated Tunable Anatase Titania Conic Self-Assemblies</title><author>Zhang, Bong June ; Kim, Kwang Jin ; Lee, Deuk Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-eed38be73c413a6a3e2babcef7c996b845a3ba94117066fe72c4d55a23ffed873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Anatase</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Conics</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crystallization</topic><topic>Diffusion in nanoscale solids</topic><topic>Diffusion in solids</topic><topic>Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Exact sciences and technology</topic><topic>Inorganic Chemistry</topic><topic>Lasers</topic><topic>Lithium</topic><topic>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</topic><topic>Materials Science</topic><topic>Methods of nanofabrication</topic><topic>Morphology</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physical Chemistry</topic><topic>Physical properties</topic><topic>Physics</topic><topic>Research Paper</topic><topic>Self assembly</topic><topic>Surface area</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Titanium dioxide</topic><topic>Transport properties of condensed matter (nonelectronic)</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Bong June</creatorcontrib><creatorcontrib>Kim, Kwang Jin</creatorcontrib><creatorcontrib>Lee, Deuk Yong</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Ceramic Abstracts</collection><jtitle>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Bong June</au><au>Kim, Kwang Jin</au><au>Lee, Deuk Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanosphere-Decorated Tunable Anatase Titania Conic Self-Assemblies</atitle><jtitle>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</jtitle><stitle>J Nanopart Res</stitle><date>2013-09-01</date><risdate>2013</risdate><volume>15</volume><issue>9</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><artnum>1837</artnum><issn>1388-0764</issn><eissn>1572-896X</eissn><abstract>The evolution of morphology has been a key parameter to modify electronic and physical properties of functional materials. For anatase titania, most research has been focused on tubular and/or mesoporous shapes. In this report, we note our findings of cone-shaped anatase titania self-assemblies grown by anodic oxidation. These individual anatase TiO
2
cones are constructed from numerous titania nanospheres. The variation in morphology (base diameter and height) is controlled by varying the electrolyte, the concentration of fluoride, and the applied voltage. The crystallization of the anatase phase and the enlarged surface area is confirmed by various spectroscopic methods (FE-SEM, EDS, and TEM). Through controlling the enhanced surface area and the well-ordered ion passage, the Li
+
diffusion rate significantly increases and leads to reversibility (charge–discharge cycle). The CV and EIS results imply structurally modified titania conic self-assemblies which can be a potential lithium intercalation template.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11051-013-1837-5</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1388-0764 |
ispartof | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2013-09, Vol.15 (9), p.1-11, Article 1837 |
issn | 1388-0764 1572-896X |
language | eng |
recordid | cdi_proquest_miscellaneous_1464544756 |
source | Springer Nature |
subjects | Anatase Characterization and Evaluation of Materials Chemistry and Materials Science Condensed matter: electronic structure, electrical, magnetic, and optical properties Condensed matter: structure, mechanical and thermal properties Conics Cross-disciplinary physics: materials science rheology Crystallization Diffusion in nanoscale solids Diffusion in solids Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures Exact sciences and technology Inorganic Chemistry Lasers Lithium Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties Materials Science Methods of nanofabrication Morphology Nanomaterials Nanoparticles Nanostructure Nanotechnology Optical Devices Optics Photonics Physical Chemistry Physical properties Physics Research Paper Self assembly Surface area Surfaces and interfaces thin films and whiskers (structure and nonelectronic properties) Titanium dioxide Transport properties of condensed matter (nonelectronic) |
title | Nanosphere-Decorated Tunable Anatase Titania Conic Self-Assemblies |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A34%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanosphere-Decorated%20Tunable%20Anatase%20Titania%20Conic%20Self-Assemblies&rft.jtitle=Journal%20of%20nanoparticle%20research%20:%20an%20interdisciplinary%20forum%20for%20nanoscale%20science%20and%20technology&rft.au=Zhang,%20Bong%20June&rft.date=2013-09-01&rft.volume=15&rft.issue=9&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.artnum=1837&rft.issn=1388-0764&rft.eissn=1572-896X&rft_id=info:doi/10.1007/s11051-013-1837-5&rft_dat=%3Cproquest_cross%3E3080585051%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-eed38be73c413a6a3e2babcef7c996b845a3ba94117066fe72c4d55a23ffed873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1435825876&rft_id=info:pmid/&rfr_iscdi=true |