Loading…

Nanosphere-Decorated Tunable Anatase Titania Conic Self-Assemblies

The evolution of morphology has been a key parameter to modify electronic and physical properties of functional materials. For anatase titania, most research has been focused on tubular and/or mesoporous shapes. In this report, we note our findings of cone-shaped anatase titania self-assemblies grow...

Full description

Saved in:
Bibliographic Details
Published in:Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology 2013-09, Vol.15 (9), p.1-11, Article 1837
Main Authors: Zhang, Bong June, Kim, Kwang Jin, Lee, Deuk Yong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c368t-eed38be73c413a6a3e2babcef7c996b845a3ba94117066fe72c4d55a23ffed873
container_end_page 11
container_issue 9
container_start_page 1
container_title Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology
container_volume 15
creator Zhang, Bong June
Kim, Kwang Jin
Lee, Deuk Yong
description The evolution of morphology has been a key parameter to modify electronic and physical properties of functional materials. For anatase titania, most research has been focused on tubular and/or mesoporous shapes. In this report, we note our findings of cone-shaped anatase titania self-assemblies grown by anodic oxidation. These individual anatase TiO 2 cones are constructed from numerous titania nanospheres. The variation in morphology (base diameter and height) is controlled by varying the electrolyte, the concentration of fluoride, and the applied voltage. The crystallization of the anatase phase and the enlarged surface area is confirmed by various spectroscopic methods (FE-SEM, EDS, and TEM). Through controlling the enhanced surface area and the well-ordered ion passage, the Li + diffusion rate significantly increases and leads to reversibility (charge–discharge cycle). The CV and EIS results imply structurally modified titania conic self-assemblies which can be a potential lithium intercalation template.
doi_str_mv 10.1007/s11051-013-1837-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1464544756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3080585051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-eed38be73c413a6a3e2babcef7c996b845a3ba94117066fe72c4d55a23ffed873</originalsourceid><addsrcrecordid>eNp1kE2L1EAQhoMouI7-AG8BEfbS2tXfOc7O-gWLHhzBW1PpqWiGTGfsSg7--80ww7IInqqgnveleKrqNch3IKV_zwDSgpCgBQTthX1SXYH1SoTG_Xy67DoEIb0zz6sXzHspwalGXVU3XzGPfPxNhcQtpbHgRLt6O2dsB6rXGSdkqrf9hLnHejPmPtXfaejEmpkO7dATv6yedTgwvbrMVfXj44ft5rO4-_bpy2Z9J5J2YRJEOx1a8joZ0OhQk2qxTdT51DSuDcaibrExAF4615FXyeysRaW7jnbB61V1fe49lvHPTDzFQ8-JhgEzjTNHMM5YY7x1C_rmH3Q_ziUv3y2UtkHZ4E8UnKlURuZCXTyW_oDlbwQZT1bj2WpcrMaT1WiXzNtLM3LCoSuYU88PQeV9aBTAwqkzx8sp_6Ly6IP_lt8DPjCGTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1435825876</pqid></control><display><type>article</type><title>Nanosphere-Decorated Tunable Anatase Titania Conic Self-Assemblies</title><source>Springer Nature</source><creator>Zhang, Bong June ; Kim, Kwang Jin ; Lee, Deuk Yong</creator><creatorcontrib>Zhang, Bong June ; Kim, Kwang Jin ; Lee, Deuk Yong</creatorcontrib><description>The evolution of morphology has been a key parameter to modify electronic and physical properties of functional materials. For anatase titania, most research has been focused on tubular and/or mesoporous shapes. In this report, we note our findings of cone-shaped anatase titania self-assemblies grown by anodic oxidation. These individual anatase TiO 2 cones are constructed from numerous titania nanospheres. The variation in morphology (base diameter and height) is controlled by varying the electrolyte, the concentration of fluoride, and the applied voltage. The crystallization of the anatase phase and the enlarged surface area is confirmed by various spectroscopic methods (FE-SEM, EDS, and TEM). Through controlling the enhanced surface area and the well-ordered ion passage, the Li + diffusion rate significantly increases and leads to reversibility (charge–discharge cycle). The CV and EIS results imply structurally modified titania conic self-assemblies which can be a potential lithium intercalation template.</description><identifier>ISSN: 1388-0764</identifier><identifier>EISSN: 1572-896X</identifier><identifier>DOI: 10.1007/s11051-013-1837-5</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Anatase ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Conics ; Cross-disciplinary physics: materials science; rheology ; Crystallization ; Diffusion in nanoscale solids ; Diffusion in solids ; Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Exact sciences and technology ; Inorganic Chemistry ; Lasers ; Lithium ; Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties ; Materials Science ; Methods of nanofabrication ; Morphology ; Nanomaterials ; Nanoparticles ; Nanostructure ; Nanotechnology ; Optical Devices ; Optics ; Photonics ; Physical Chemistry ; Physical properties ; Physics ; Research Paper ; Self assembly ; Surface area ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Titanium dioxide ; Transport properties of condensed matter (nonelectronic)</subject><ispartof>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2013-09, Vol.15 (9), p.1-11, Article 1837</ispartof><rights>Springer Science+Business Media Dordrecht 2013</rights><rights>2014 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c368t-eed38be73c413a6a3e2babcef7c996b845a3ba94117066fe72c4d55a23ffed873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27789211$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Bong June</creatorcontrib><creatorcontrib>Kim, Kwang Jin</creatorcontrib><creatorcontrib>Lee, Deuk Yong</creatorcontrib><title>Nanosphere-Decorated Tunable Anatase Titania Conic Self-Assemblies</title><title>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</title><addtitle>J Nanopart Res</addtitle><description>The evolution of morphology has been a key parameter to modify electronic and physical properties of functional materials. For anatase titania, most research has been focused on tubular and/or mesoporous shapes. In this report, we note our findings of cone-shaped anatase titania self-assemblies grown by anodic oxidation. These individual anatase TiO 2 cones are constructed from numerous titania nanospheres. The variation in morphology (base diameter and height) is controlled by varying the electrolyte, the concentration of fluoride, and the applied voltage. The crystallization of the anatase phase and the enlarged surface area is confirmed by various spectroscopic methods (FE-SEM, EDS, and TEM). Through controlling the enhanced surface area and the well-ordered ion passage, the Li + diffusion rate significantly increases and leads to reversibility (charge–discharge cycle). The CV and EIS results imply structurally modified titania conic self-assemblies which can be a potential lithium intercalation template.</description><subject>Anatase</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Conics</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crystallization</subject><subject>Diffusion in nanoscale solids</subject><subject>Diffusion in solids</subject><subject>Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Exact sciences and technology</subject><subject>Inorganic Chemistry</subject><subject>Lasers</subject><subject>Lithium</subject><subject>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</subject><subject>Materials Science</subject><subject>Methods of nanofabrication</subject><subject>Morphology</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physical Chemistry</subject><subject>Physical properties</subject><subject>Physics</subject><subject>Research Paper</subject><subject>Self assembly</subject><subject>Surface area</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Titanium dioxide</subject><subject>Transport properties of condensed matter (nonelectronic)</subject><issn>1388-0764</issn><issn>1572-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kE2L1EAQhoMouI7-AG8BEfbS2tXfOc7O-gWLHhzBW1PpqWiGTGfsSg7--80ww7IInqqgnveleKrqNch3IKV_zwDSgpCgBQTthX1SXYH1SoTG_Xy67DoEIb0zz6sXzHspwalGXVU3XzGPfPxNhcQtpbHgRLt6O2dsB6rXGSdkqrf9hLnHejPmPtXfaejEmpkO7dATv6yedTgwvbrMVfXj44ft5rO4-_bpy2Z9J5J2YRJEOx1a8joZ0OhQk2qxTdT51DSuDcaibrExAF4615FXyeysRaW7jnbB61V1fe49lvHPTDzFQ8-JhgEzjTNHMM5YY7x1C_rmH3Q_ziUv3y2UtkHZ4E8UnKlURuZCXTyW_oDlbwQZT1bj2WpcrMaT1WiXzNtLM3LCoSuYU88PQeV9aBTAwqkzx8sp_6Ly6IP_lt8DPjCGTA</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Zhang, Bong June</creator><creator>Kim, Kwang Jin</creator><creator>Lee, Deuk Yong</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7QQ</scope></search><sort><creationdate>20130901</creationdate><title>Nanosphere-Decorated Tunable Anatase Titania Conic Self-Assemblies</title><author>Zhang, Bong June ; Kim, Kwang Jin ; Lee, Deuk Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-eed38be73c413a6a3e2babcef7c996b845a3ba94117066fe72c4d55a23ffed873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Anatase</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Conics</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crystallization</topic><topic>Diffusion in nanoscale solids</topic><topic>Diffusion in solids</topic><topic>Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Exact sciences and technology</topic><topic>Inorganic Chemistry</topic><topic>Lasers</topic><topic>Lithium</topic><topic>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</topic><topic>Materials Science</topic><topic>Methods of nanofabrication</topic><topic>Morphology</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physical Chemistry</topic><topic>Physical properties</topic><topic>Physics</topic><topic>Research Paper</topic><topic>Self assembly</topic><topic>Surface area</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Titanium dioxide</topic><topic>Transport properties of condensed matter (nonelectronic)</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Bong June</creatorcontrib><creatorcontrib>Kim, Kwang Jin</creatorcontrib><creatorcontrib>Lee, Deuk Yong</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Ceramic Abstracts</collection><jtitle>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Bong June</au><au>Kim, Kwang Jin</au><au>Lee, Deuk Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanosphere-Decorated Tunable Anatase Titania Conic Self-Assemblies</atitle><jtitle>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</jtitle><stitle>J Nanopart Res</stitle><date>2013-09-01</date><risdate>2013</risdate><volume>15</volume><issue>9</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><artnum>1837</artnum><issn>1388-0764</issn><eissn>1572-896X</eissn><abstract>The evolution of morphology has been a key parameter to modify electronic and physical properties of functional materials. For anatase titania, most research has been focused on tubular and/or mesoporous shapes. In this report, we note our findings of cone-shaped anatase titania self-assemblies grown by anodic oxidation. These individual anatase TiO 2 cones are constructed from numerous titania nanospheres. The variation in morphology (base diameter and height) is controlled by varying the electrolyte, the concentration of fluoride, and the applied voltage. The crystallization of the anatase phase and the enlarged surface area is confirmed by various spectroscopic methods (FE-SEM, EDS, and TEM). Through controlling the enhanced surface area and the well-ordered ion passage, the Li + diffusion rate significantly increases and leads to reversibility (charge–discharge cycle). The CV and EIS results imply structurally modified titania conic self-assemblies which can be a potential lithium intercalation template.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11051-013-1837-5</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1388-0764
ispartof Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2013-09, Vol.15 (9), p.1-11, Article 1837
issn 1388-0764
1572-896X
language eng
recordid cdi_proquest_miscellaneous_1464544756
source Springer Nature
subjects Anatase
Characterization and Evaluation of Materials
Chemistry and Materials Science
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Conics
Cross-disciplinary physics: materials science
rheology
Crystallization
Diffusion in nanoscale solids
Diffusion in solids
Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Exact sciences and technology
Inorganic Chemistry
Lasers
Lithium
Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties
Materials Science
Methods of nanofabrication
Morphology
Nanomaterials
Nanoparticles
Nanostructure
Nanotechnology
Optical Devices
Optics
Photonics
Physical Chemistry
Physical properties
Physics
Research Paper
Self assembly
Surface area
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
Titanium dioxide
Transport properties of condensed matter (nonelectronic)
title Nanosphere-Decorated Tunable Anatase Titania Conic Self-Assemblies
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A34%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanosphere-Decorated%20Tunable%20Anatase%20Titania%20Conic%20Self-Assemblies&rft.jtitle=Journal%20of%20nanoparticle%20research%20:%20an%20interdisciplinary%20forum%20for%20nanoscale%20science%20and%20technology&rft.au=Zhang,%20Bong%20June&rft.date=2013-09-01&rft.volume=15&rft.issue=9&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.artnum=1837&rft.issn=1388-0764&rft.eissn=1572-896X&rft_id=info:doi/10.1007/s11051-013-1837-5&rft_dat=%3Cproquest_cross%3E3080585051%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-eed38be73c413a6a3e2babcef7c996b845a3ba94117066fe72c4d55a23ffed873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1435825876&rft_id=info:pmid/&rfr_iscdi=true