Loading…

High power (> 5 W) lambda similar to 9.6 mu m tapered quantum cascade lasers grown by OMVPE

AlInAs/GaInAs superlattices (SLs) with barrier and well layers of various thicknesses were grown by organometallic vapor phase epitaxy to optimize growth of quantum cascade lasers (QCLs). High-resolution x-ray diffraction data of nominally lattice-matched SLs show a systematic shift toward more comp...

Full description

Saved in:
Bibliographic Details
Published in:Journal of crystal growth 2013-05, Vol.370, p.212-216
Main Authors: Wang, CA, Goyal, A K, Menzel, S, Calawa, DR, Spencer, M, Connors, M K, McNulty, D, Sanchez, A, Turner, G W, Capasso, F
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 216
container_issue
container_start_page 212
container_title Journal of crystal growth
container_volume 370
creator Wang, CA
Goyal, A K
Menzel, S
Calawa, DR
Spencer, M
Connors, M K
McNulty, D
Sanchez, A
Turner, G W
Capasso, F
description AlInAs/GaInAs superlattices (SLs) with barrier and well layers of various thicknesses were grown by organometallic vapor phase epitaxy to optimize growth of quantum cascade lasers (QCLs). High-resolution x-ray diffraction data of nominally lattice-matched SLs show a systematic shift toward more compressively strained SLs as the barrier/well layer thicknesses are decreased below about 10 nm. This shift is attributed to In surface segregation in both AlInAs and GaInAs. This shift is compensated for in the growth of ultra-thin layers in QCL structures. QCLs with tapered gain regions and emitting at 9.6 mu m are demonstrated with peak power as high as 5.3 W from one facet at 20 degree C.
doi_str_mv 10.1016/j.jcrysgro.2012.11.045
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1464548090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1464548090</sourcerecordid><originalsourceid>FETCH-LOGICAL-p118t-e2b5f22b27370ea13914172e88e8cd71342e86dbe062bb7971568cba018375e03</originalsourceid><addsrcrecordid>eNotjTtPwzAUhT2ARCn8BXTHMiTc6zixsyChqjykojLwGBgqO7ktqZImtRNV_fdEgumc4TvfEeKGMCak7G4X7wp_ClvfxhJJxkQxqvRMTBCljFAqcyEuQ9ghjjThRHw_V9sf6Noje5jdQwpft1DbxpUWQtVUtfXQt5DHGTQDNNDbjj2XcBjsvh8aKGwobMnjJLAPMP4e9-BOsHr9fFtcifONrQNf_-dUfDwu3ufP0XL19DJ_WEYdkekjli7dSOmkTjSypSQnRVqyMWyKUlOixp6VjjGTzulcU5qZwlkkk-iUMZmK2Z-38-1h4NCvmyoUXNd2z-0Q1qQylSqDOSa_8tlUbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1464548090</pqid></control><display><type>article</type><title>High power (&gt; 5 W) lambda similar to 9.6 mu m tapered quantum cascade lasers grown by OMVPE</title><source>Elsevier</source><creator>Wang, CA ; Goyal, A K ; Menzel, S ; Calawa, DR ; Spencer, M ; Connors, M K ; McNulty, D ; Sanchez, A ; Turner, G W ; Capasso, F</creator><creatorcontrib>Wang, CA ; Goyal, A K ; Menzel, S ; Calawa, DR ; Spencer, M ; Connors, M K ; McNulty, D ; Sanchez, A ; Turner, G W ; Capasso, F</creatorcontrib><description>AlInAs/GaInAs superlattices (SLs) with barrier and well layers of various thicknesses were grown by organometallic vapor phase epitaxy to optimize growth of quantum cascade lasers (QCLs). High-resolution x-ray diffraction data of nominally lattice-matched SLs show a systematic shift toward more compressively strained SLs as the barrier/well layer thicknesses are decreased below about 10 nm. This shift is attributed to In surface segregation in both AlInAs and GaInAs. This shift is compensated for in the growth of ultra-thin layers in QCL structures. QCLs with tapered gain regions and emitting at 9.6 mu m are demonstrated with peak power as high as 5.3 W from one facet at 20 degree C.</description><identifier>ISSN: 0022-0248</identifier><identifier>DOI: 10.1016/j.jcrysgro.2012.11.045</identifier><language>eng</language><subject>Barriers ; Crystal growth ; Diffraction ; Gain ; Phase shift ; Quantum cascade lasers ; Vapor phase epitaxy ; X-rays</subject><ispartof>Journal of crystal growth, 2013-05, Vol.370, p.212-216</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, CA</creatorcontrib><creatorcontrib>Goyal, A K</creatorcontrib><creatorcontrib>Menzel, S</creatorcontrib><creatorcontrib>Calawa, DR</creatorcontrib><creatorcontrib>Spencer, M</creatorcontrib><creatorcontrib>Connors, M K</creatorcontrib><creatorcontrib>McNulty, D</creatorcontrib><creatorcontrib>Sanchez, A</creatorcontrib><creatorcontrib>Turner, G W</creatorcontrib><creatorcontrib>Capasso, F</creatorcontrib><title>High power (&gt; 5 W) lambda similar to 9.6 mu m tapered quantum cascade lasers grown by OMVPE</title><title>Journal of crystal growth</title><description>AlInAs/GaInAs superlattices (SLs) with barrier and well layers of various thicknesses were grown by organometallic vapor phase epitaxy to optimize growth of quantum cascade lasers (QCLs). High-resolution x-ray diffraction data of nominally lattice-matched SLs show a systematic shift toward more compressively strained SLs as the barrier/well layer thicknesses are decreased below about 10 nm. This shift is attributed to In surface segregation in both AlInAs and GaInAs. This shift is compensated for in the growth of ultra-thin layers in QCL structures. QCLs with tapered gain regions and emitting at 9.6 mu m are demonstrated with peak power as high as 5.3 W from one facet at 20 degree C.</description><subject>Barriers</subject><subject>Crystal growth</subject><subject>Diffraction</subject><subject>Gain</subject><subject>Phase shift</subject><subject>Quantum cascade lasers</subject><subject>Vapor phase epitaxy</subject><subject>X-rays</subject><issn>0022-0248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNotjTtPwzAUhT2ARCn8BXTHMiTc6zixsyChqjykojLwGBgqO7ktqZImtRNV_fdEgumc4TvfEeKGMCak7G4X7wp_ClvfxhJJxkQxqvRMTBCljFAqcyEuQ9ghjjThRHw_V9sf6Noje5jdQwpft1DbxpUWQtVUtfXQt5DHGTQDNNDbjj2XcBjsvh8aKGwobMnjJLAPMP4e9-BOsHr9fFtcifONrQNf_-dUfDwu3ufP0XL19DJ_WEYdkekjli7dSOmkTjSypSQnRVqyMWyKUlOixp6VjjGTzulcU5qZwlkkk-iUMZmK2Z-38-1h4NCvmyoUXNd2z-0Q1qQylSqDOSa_8tlUbA</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Wang, CA</creator><creator>Goyal, A K</creator><creator>Menzel, S</creator><creator>Calawa, DR</creator><creator>Spencer, M</creator><creator>Connors, M K</creator><creator>McNulty, D</creator><creator>Sanchez, A</creator><creator>Turner, G W</creator><creator>Capasso, F</creator><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130501</creationdate><title>High power (&gt; 5 W) lambda similar to 9.6 mu m tapered quantum cascade lasers grown by OMVPE</title><author>Wang, CA ; Goyal, A K ; Menzel, S ; Calawa, DR ; Spencer, M ; Connors, M K ; McNulty, D ; Sanchez, A ; Turner, G W ; Capasso, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p118t-e2b5f22b27370ea13914172e88e8cd71342e86dbe062bb7971568cba018375e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Barriers</topic><topic>Crystal growth</topic><topic>Diffraction</topic><topic>Gain</topic><topic>Phase shift</topic><topic>Quantum cascade lasers</topic><topic>Vapor phase epitaxy</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, CA</creatorcontrib><creatorcontrib>Goyal, A K</creatorcontrib><creatorcontrib>Menzel, S</creatorcontrib><creatorcontrib>Calawa, DR</creatorcontrib><creatorcontrib>Spencer, M</creatorcontrib><creatorcontrib>Connors, M K</creatorcontrib><creatorcontrib>McNulty, D</creatorcontrib><creatorcontrib>Sanchez, A</creatorcontrib><creatorcontrib>Turner, G W</creatorcontrib><creatorcontrib>Capasso, F</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, CA</au><au>Goyal, A K</au><au>Menzel, S</au><au>Calawa, DR</au><au>Spencer, M</au><au>Connors, M K</au><au>McNulty, D</au><au>Sanchez, A</au><au>Turner, G W</au><au>Capasso, F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High power (&gt; 5 W) lambda similar to 9.6 mu m tapered quantum cascade lasers grown by OMVPE</atitle><jtitle>Journal of crystal growth</jtitle><date>2013-05-01</date><risdate>2013</risdate><volume>370</volume><spage>212</spage><epage>216</epage><pages>212-216</pages><issn>0022-0248</issn><abstract>AlInAs/GaInAs superlattices (SLs) with barrier and well layers of various thicknesses were grown by organometallic vapor phase epitaxy to optimize growth of quantum cascade lasers (QCLs). High-resolution x-ray diffraction data of nominally lattice-matched SLs show a systematic shift toward more compressively strained SLs as the barrier/well layer thicknesses are decreased below about 10 nm. This shift is attributed to In surface segregation in both AlInAs and GaInAs. This shift is compensated for in the growth of ultra-thin layers in QCL structures. QCLs with tapered gain regions and emitting at 9.6 mu m are demonstrated with peak power as high as 5.3 W from one facet at 20 degree C.</abstract><doi>10.1016/j.jcrysgro.2012.11.045</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-0248
ispartof Journal of crystal growth, 2013-05, Vol.370, p.212-216
issn 0022-0248
language eng
recordid cdi_proquest_miscellaneous_1464548090
source Elsevier
subjects Barriers
Crystal growth
Diffraction
Gain
Phase shift
Quantum cascade lasers
Vapor phase epitaxy
X-rays
title High power (> 5 W) lambda similar to 9.6 mu m tapered quantum cascade lasers grown by OMVPE
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A35%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20power%20(%3E%205%20W)%20lambda%20similar%20to%209.6%20mu%20m%20tapered%20quantum%20cascade%20lasers%20grown%20by%20OMVPE&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Wang,%20CA&rft.date=2013-05-01&rft.volume=370&rft.spage=212&rft.epage=216&rft.pages=212-216&rft.issn=0022-0248&rft_id=info:doi/10.1016/j.jcrysgro.2012.11.045&rft_dat=%3Cproquest%3E1464548090%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p118t-e2b5f22b27370ea13914172e88e8cd71342e86dbe062bb7971568cba018375e03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1464548090&rft_id=info:pmid/&rfr_iscdi=true