Loading…
Thermoelectric Properties of Carbon Nanotube and Nanofiber Based Ethylene-Octene Copolymer Composites for Thermoelectric Devices
Polymer composites have been created from multiwalled carbon nanotubes or carbon nanofibers and ethylene-octene copolymer. The composites have thermoelectric properties and exhibit thermoelectric effect, that is, the conversion of temperature differences into electricity. The thermoelectric efficien...
Saved in:
Published in: | Journal of nanomaterials 2013-01, Vol.2013 (2013), p.1-7 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Polymer composites have been created from multiwalled carbon nanotubes or carbon nanofibers and ethylene-octene copolymer. The composites have thermoelectric properties and exhibit thermoelectric effect, that is, the conversion of temperature differences into electricity. The thermoelectric efficiency of created composites with nanotube or nanofiber concentration of 30 wt% evaluated by a thermoelectric power at room temperature is 13.3 μV/K and 14.2 μV/K, respectively. The flexible thermoelectric device (thermopile) was constructed with three different composite legs to produce electric current and the output voltage was measured in the range of temperature difference from −15 to 25°C. |
---|---|
ISSN: | 1687-4110 1687-4129 |
DOI: | 10.1155/2013/792875 |